Extensional subobjects in categories of Ω -fuzzy sets

Jiří Močkoř

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 2, page 631-645
  • ISSN: 0011-4642

Abstract

top
Two categories 𝕊𝕖𝕥 ( Ω ) and 𝕊𝕖𝕥𝔽 ( Ω ) of fuzzy sets over an M V -algebra Ω are investigated. Full subcategories of these categories are introduced consisting of objects ( s u b ( A , δ ) , σ ) , where s u b ( A , δ ) is a subset of all extensional subobjects of an object ( A , δ ) . It is proved that all these subcategories are quasi-reflective subcategories in the corresponding categories.

How to cite

top

Močkoř, Jiří. "Extensional subobjects in categories of $\Omega $-fuzzy sets." Czechoslovak Mathematical Journal 57.2 (2007): 631-645. <http://eudml.org/doc/31151>.

@article{Močkoř2007,
abstract = {Two categories $\mathbb \{Set\}(\Omega )$ and $\mathbb \{SetF\}(\Omega )$ of fuzzy sets over an $MV$-algebra $\Omega $ are investigated. Full subcategories of these categories are introduced consisting of objects $(\mathop \{\{\mathrm \{s\}ub\}\}(A,\delta )$, $\sigma )$, where $\mathop \{\{\mathrm \{s\}ub\}\}(A,\delta )$ is a subset of all extensional subobjects of an object $(A,\delta )$. It is proved that all these subcategories are quasi-reflective subcategories in the corresponding categories.},
author = {Močkoř, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {$MV$-algebras; similarity relation; quasi-reflective subcategory; MV-algebras; similarity relation; quasi-reflective subcategory},
language = {eng},
number = {2},
pages = {631-645},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extensional subobjects in categories of $\Omega $-fuzzy sets},
url = {http://eudml.org/doc/31151},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Močkoř, Jiří
TI - Extensional subobjects in categories of $\Omega $-fuzzy sets
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 2
SP - 631
EP - 645
AB - Two categories $\mathbb {Set}(\Omega )$ and $\mathbb {SetF}(\Omega )$ of fuzzy sets over an $MV$-algebra $\Omega $ are investigated. Full subcategories of these categories are introduced consisting of objects $(\mathop {{\mathrm {s}ub}}(A,\delta )$, $\sigma )$, where $\mathop {{\mathrm {s}ub}}(A,\delta )$ is a subset of all extensional subobjects of an object $(A,\delta )$. It is proved that all these subcategories are quasi-reflective subcategories in the corresponding categories.
LA - eng
KW - $MV$-algebras; similarity relation; quasi-reflective subcategory; MV-algebras; similarity relation; quasi-reflective subcategory
UR - http://eudml.org/doc/31151
ER -

References

top
  1. 10.1016/0165-0114(81)90033-6, Fuzzy Sets and Systems 5 (1981), 47–67. (1981) Zbl0453.03059MR0595953DOI10.1016/0165-0114(81)90033-6
  2. 10.1016/0022-247X(67)90189-8, J. Math. Anal. Appli. 18 (1967), 145–174. (1967) Zbl0145.24404MR0224391DOI10.1016/0022-247X(67)90189-8
  3. A category approach to Boolean-valued set theory, Manuscript, University of Waterloo, 1973. (1973) 
  4. Presheaves over GL-monoids, Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht, New York (1995), 127–157. (1995) MR1345643
  5. M-Valued sets and sheaves over integral, commutative cl-monoids, Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht, Boston (1992), 33–72. (1992) MR1154568
  6. Classification of Subsheaves over GL-algebras, Proceedings of Logic Colloquium 98 Prague, Springer Verlag (1999), 238–261. (1999) MR1743263
  7. Commutative, residuated l-monoids, Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ. Dordrecht, New York (1995), 53–106. (1995) MR1345641
  8. 10.1016/0165-0114(91)90086-6, Fuzzy Sets and Systems 42 (1991), 15–35. (1991) MR1123574DOI10.1016/0165-0114(91)90086-6
  9. 10.1023/B:CMAJ.0000042376.21044.1a, Czech. Math. J. 129 (2004), 379–392. (2004) MR2059258DOI10.1023/B:CMAJ.0000042376.21044.1a
  10. Mathematical principles of fuzzy logic, Kluwer Academic Publishers, Boston, Dordrecht, London, 1999. (1999) MR1733839
  11. 10.1016/0165-0114(88)90031-0, Fuzzy Sets and Systems 28 (1988), 235–244. (1988) Zbl0675.03032MR0976664DOI10.1016/0165-0114(88)90031-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.