Extensional subobjects in categories of -fuzzy sets
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 2, page 631-645
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMočkoř, Jiří. "Extensional subobjects in categories of $\Omega $-fuzzy sets." Czechoslovak Mathematical Journal 57.2 (2007): 631-645. <http://eudml.org/doc/31151>.
@article{Močkoř2007,
abstract = {Two categories $\mathbb \{Set\}(\Omega )$ and $\mathbb \{SetF\}(\Omega )$ of fuzzy sets over an $MV$-algebra $\Omega $ are investigated. Full subcategories of these categories are introduced consisting of objects $(\mathop \{\{\mathrm \{s\}ub\}\}(A,\delta )$, $\sigma )$, where $\mathop \{\{\mathrm \{s\}ub\}\}(A,\delta )$ is a subset of all extensional subobjects of an object $(A,\delta )$. It is proved that all these subcategories are quasi-reflective subcategories in the corresponding categories.},
author = {Močkoř, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {$MV$-algebras; similarity relation; quasi-reflective subcategory; MV-algebras; similarity relation; quasi-reflective subcategory},
language = {eng},
number = {2},
pages = {631-645},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extensional subobjects in categories of $\Omega $-fuzzy sets},
url = {http://eudml.org/doc/31151},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Močkoř, Jiří
TI - Extensional subobjects in categories of $\Omega $-fuzzy sets
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 2
SP - 631
EP - 645
AB - Two categories $\mathbb {Set}(\Omega )$ and $\mathbb {SetF}(\Omega )$ of fuzzy sets over an $MV$-algebra $\Omega $ are investigated. Full subcategories of these categories are introduced consisting of objects $(\mathop {{\mathrm {s}ub}}(A,\delta )$, $\sigma )$, where $\mathop {{\mathrm {s}ub}}(A,\delta )$ is a subset of all extensional subobjects of an object $(A,\delta )$. It is proved that all these subcategories are quasi-reflective subcategories in the corresponding categories.
LA - eng
KW - $MV$-algebras; similarity relation; quasi-reflective subcategory; MV-algebras; similarity relation; quasi-reflective subcategory
UR - http://eudml.org/doc/31151
ER -
References
top- 10.1016/0165-0114(81)90033-6, Fuzzy Sets and Systems 5 (1981), 47–67. (1981) Zbl0453.03059MR0595953DOI10.1016/0165-0114(81)90033-6
- 10.1016/0022-247X(67)90189-8, J. Math. Anal. Appli. 18 (1967), 145–174. (1967) Zbl0145.24404MR0224391DOI10.1016/0022-247X(67)90189-8
- A category approach to Boolean-valued set theory, Manuscript, University of Waterloo, 1973. (1973)
- Presheaves over GL-monoids, Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht, New York (1995), 127–157. (1995) MR1345643
- M-Valued sets and sheaves over integral, commutative cl-monoids, Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht, Boston (1992), 33–72. (1992) MR1154568
- Classification of Subsheaves over GL-algebras, Proceedings of Logic Colloquium 98 Prague, Springer Verlag (1999), 238–261. (1999) MR1743263
- Commutative, residuated l-monoids, Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ. Dordrecht, New York (1995), 53–106. (1995) MR1345641
- 10.1016/0165-0114(91)90086-6, Fuzzy Sets and Systems 42 (1991), 15–35. (1991) MR1123574DOI10.1016/0165-0114(91)90086-6
- 10.1023/B:CMAJ.0000042376.21044.1a, Czech. Math. J. 129 (2004), 379–392. (2004) MR2059258DOI10.1023/B:CMAJ.0000042376.21044.1a
- Mathematical principles of fuzzy logic, Kluwer Academic Publishers, Boston, Dordrecht, London, 1999. (1999) MR1733839
- 10.1016/0165-0114(88)90031-0, Fuzzy Sets and Systems 28 (1988), 235–244. (1988) Zbl0675.03032MR0976664DOI10.1016/0165-0114(88)90031-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.