Injective and projective properties of R [ x ] -modules

Sangwon Park; Eunha Cho

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 3, page 573-578
  • ISSN: 0011-4642

Abstract

top
We study whether the projective and injective properties of left R -modules can be implied to the special kind of left R [ x ] -modules, especially to the case of inverse polynomial modules and Laurent polynomial modules.

How to cite

top

Park, Sangwon, and Cho, Eunha. "Injective and projective properties of $R[x]$-modules." Czechoslovak Mathematical Journal 54.3 (2004): 573-578. <http://eudml.org/doc/30883>.

@article{Park2004,
abstract = {We study whether the projective and injective properties of left $R$-modules can be implied to the special kind of left $R[x]$-modules, especially to the case of inverse polynomial modules and Laurent polynomial modules.},
author = {Park, Sangwon, Cho, Eunha},
journal = {Czechoslovak Mathematical Journal},
keywords = {module; inverse polynomial module; injective module; projective modules; inverse polynomial modules; injective modules; projective modules; skew Laurent polynomial modules},
language = {eng},
number = {3},
pages = {573-578},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Injective and projective properties of $R[x]$-modules},
url = {http://eudml.org/doc/30883},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Park, Sangwon
AU - Cho, Eunha
TI - Injective and projective properties of $R[x]$-modules
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 3
SP - 573
EP - 578
AB - We study whether the projective and injective properties of left $R$-modules can be implied to the special kind of left $R[x]$-modules, especially to the case of inverse polynomial modules and Laurent polynomial modules.
LA - eng
KW - module; inverse polynomial module; injective module; projective modules; inverse polynomial modules; injective modules; projective modules; skew Laurent polynomial modules
UR - http://eudml.org/doc/30883
ER -

References

top
  1. 10.1093/qmath/25.1.359, Quart. J.  Math. Oxford 25 (1974), 359–368. (1974) Zbl0302.16027MR0371881DOI10.1093/qmath/25.1.359
  2. 10.1080/00927879808826189, Comm. Algebra 26 (1998), 1141–1145. (1998) Zbl0931.13005MR1612204DOI10.1080/00927879808826189
  3. 10.1112/jlms/s2-8.2.290, London Math. Soc. 3 (1974), 290–296. (1974) Zbl0284.13012MR0360555DOI10.1112/jlms/s2-8.2.290
  4. 10.1080/00927879308824819, Comm. Algebra 21 (1993), 4599–4613. (1993) MR1242851DOI10.1080/00927879308824819
  5. 10.1007/BF01189824, Arch. Math. (Basel) 63 (1994), 225–230. (1994) Zbl0804.18009MR1287251DOI10.1007/BF01189824
  6. 10.1080/00927870008826859, Comm. Algebra 28 (2000), 785–789. (2000) Zbl0957.13005MR1736762DOI10.1080/00927870008826859
  7. 10.1155/S0161171200004129, Internat. J.  Math. Math. Sci. 24 (2000), 437–440. (2000) MR1781510DOI10.1155/S0161171200004129
  8. 10.1023/A:1013798914813, Czechoslovak Math.  J. 51(126) (2001), 343–349. (2001) Zbl0983.16006MR1844314DOI10.1023/A:1013798914813

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.