Approximation by -Faber-Laurent rational functions in the weighted Lebesgue spaces
Czechoslovak Mathematical Journal (2004)
- Volume: 54, Issue: 3, page 751-765
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topIsrafilov, Daniyal M.. "Approximation by $p$-Faber-Laurent rational functions in the weighted Lebesgue spaces." Czechoslovak Mathematical Journal 54.3 (2004): 751-765. <http://eudml.org/doc/30897>.
@article{Israfilov2004,
abstract = {Let $L\subset C$ be a regular Jordan curve. In this work, the approximation properties of the $p$-Faber-Laurent rational series expansions in the $\omega $ weighted Lebesgue spaces $L^p(L,\omega )$ are studied. Under some restrictive conditions upon the weight functions the degree of this approximation by a $k$th integral modulus of continuity in $L^p(L,\omega )$ spaces is estimated.},
author = {Israfilov, Daniyal M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Faber polynomial; Faber series; weighted Lebesgue space; weighted Smirnov space; $k$-th modulus of continuity; Faber polynomial; Faber series; weighted Lebesgue space; weighted Smirnov space; -th modulus of continuity},
language = {eng},
number = {3},
pages = {751-765},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Approximation by $p$-Faber-Laurent rational functions in the weighted Lebesgue spaces},
url = {http://eudml.org/doc/30897},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Israfilov, Daniyal M.
TI - Approximation by $p$-Faber-Laurent rational functions in the weighted Lebesgue spaces
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 3
SP - 751
EP - 765
AB - Let $L\subset C$ be a regular Jordan curve. In this work, the approximation properties of the $p$-Faber-Laurent rational series expansions in the $\omega $ weighted Lebesgue spaces $L^p(L,\omega )$ are studied. Under some restrictive conditions upon the weight functions the degree of this approximation by a $k$th integral modulus of continuity in $L^p(L,\omega )$ spaces is estimated.
LA - eng
KW - Faber polynomial; Faber series; weighted Lebesgue space; weighted Smirnov space; $k$-th modulus of continuity; Faber polynomial; Faber series; weighted Lebesgue space; weighted Smirnov space; -th modulus of continuity
UR - http://eudml.org/doc/30897
ER -
References
top- Approximation in the mean of analytic functions of class , In: Investigations on the Modern Problems of the Function Theory of a Complex Variable, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1960, pp. 272–286. (Russian) (1960) MR0116101
- 10.1016/0021-9045(77)90029-6, J. Approx. Theory 19 (1977), 61–68. (1977) MR0614155DOI10.1016/0021-9045(77)90029-6
- Approximation by Faber-Laurent rational functions in the mean of functions of the class with , Approximation Theory App. 11 (1995), 105–118. (1995) MR1341424
- 10.24033/asens.1469, Ann. Sci. Ecol. Norm. Super. 4 (1984), 157–189. (1984) MR0744071DOI10.24033/asens.1469
- Theory of -Spaces, Academic Press, , 1970. (1970) MR0268655
- Weighted estimates for singular integrals and their applications, In: Mathematical analysis, Vol. 21, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1983, pp. 42–129. (Russian) (1983) MR0736522
- Lectures on Complex Approximation, Birkhäuser-Verlag, Boston-Stuttgart, 1987. (1987) Zbl0612.30003MR0894920
- Geometric Theory of Functions of a Complex Variable, Translation of Mathematical Monographs, Vol. 26, AMS, 1969. (1969) MR0247039
- Investigation of the properties of functions with quasimonotone Fourier coefficients in generalized Nikolsky-Besov spaces. Author’s summary of candidates dissertation, (1986), Tbilisi. (Russian) (1986)
- A constructive characterization of a certain class of functions, Dokl. Akad. Nauk SSSR 223 (1975), 35–37. (1975) MR0470218
- Approximate properties of the generalized Faber series in an integral metric, Izv. Akad. Nauk Az. SSR, Ser. Fiz.-Tekh. Math. Nauk 2 (1987), 10–14. (Russian) (1987) Zbl0655.30023MR0946314
- 10.1007/s003650010030, Constr. Approx. 17 (2001), 335–351. (2001) MR1828916DOI10.1007/s003650010030
- A direct theorem on mean approximation of analytic functions by polynomials, Soviet Math. Dokl. 10 (1969), 411–414. (1969) Zbl0212.09901
- Theory of Analytic Functions, Vol. 2, Izdatelstvo Nauka, Moscow, 1968. (1968)
- 10.1090/S0002-9947-1972-0293384-6, Trans. Amer. Math. Soc. 165 (1972), 207–226. (1972) MR0293384DOI10.1090/S0002-9947-1972-0293384-6
- Series of Faber Polynomials, Nauka, Moscow, 1984; Cordon and Breach Publishers, 1998. (1984; Cordon and Breach Publishers, 1998) Zbl0936.30026MR0774773
- 10.1090/S0002-9947-1959-0108595-3, Trans. Amer. Math. Soc. 92 (1959), 355–370. (1959) MR0108595DOI10.1090/S0002-9947-1959-0108595-3
- Best approximation on the unit sphere in , Funct. Anal. and Approx. Proc. Conf. Oberwolfach. Aug. 9-16, 1980, Basel, 1981, pp. 233–245. (1981) Zbl0529.41024MR0650278
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.