Approximation by p -Faber-Laurent rational functions in the weighted Lebesgue spaces

Daniyal M. Israfilov

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 3, page 751-765
  • ISSN: 0011-4642

Abstract

top
Let L C be a regular Jordan curve. In this work, the approximation properties of the p -Faber-Laurent rational series expansions in the ω weighted Lebesgue spaces L p ( L , ω ) are studied. Under some restrictive conditions upon the weight functions the degree of this approximation by a k th integral modulus of continuity in L p ( L , ω ) spaces is estimated.

How to cite

top

Israfilov, Daniyal M.. "Approximation by $p$-Faber-Laurent rational functions in the weighted Lebesgue spaces." Czechoslovak Mathematical Journal 54.3 (2004): 751-765. <http://eudml.org/doc/30897>.

@article{Israfilov2004,
abstract = {Let $L\subset C$ be a regular Jordan curve. In this work, the approximation properties of the $p$-Faber-Laurent rational series expansions in the $\omega $ weighted Lebesgue spaces $L^p(L,\omega )$ are studied. Under some restrictive conditions upon the weight functions the degree of this approximation by a $k$th integral modulus of continuity in $L^p(L,\omega )$ spaces is estimated.},
author = {Israfilov, Daniyal M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Faber polynomial; Faber series; weighted Lebesgue space; weighted Smirnov space; $k$-th modulus of continuity; Faber polynomial; Faber series; weighted Lebesgue space; weighted Smirnov space; -th modulus of continuity},
language = {eng},
number = {3},
pages = {751-765},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Approximation by $p$-Faber-Laurent rational functions in the weighted Lebesgue spaces},
url = {http://eudml.org/doc/30897},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Israfilov, Daniyal M.
TI - Approximation by $p$-Faber-Laurent rational functions in the weighted Lebesgue spaces
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 3
SP - 751
EP - 765
AB - Let $L\subset C$ be a regular Jordan curve. In this work, the approximation properties of the $p$-Faber-Laurent rational series expansions in the $\omega $ weighted Lebesgue spaces $L^p(L,\omega )$ are studied. Under some restrictive conditions upon the weight functions the degree of this approximation by a $k$th integral modulus of continuity in $L^p(L,\omega )$ spaces is estimated.
LA - eng
KW - Faber polynomial; Faber series; weighted Lebesgue space; weighted Smirnov space; $k$-th modulus of continuity; Faber polynomial; Faber series; weighted Lebesgue space; weighted Smirnov space; -th modulus of continuity
UR - http://eudml.org/doc/30897
ER -

References

top
  1. Approximation in the mean of analytic functions of class  E p , In: Investigations on the Modern Problems of the Function Theory of a Complex Variable, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1960, pp. 272–286. (Russian) (1960) MR0116101
  2. 10.1016/0021-9045(77)90029-6, J.  Approx. Theory 19 (1977), 61–68. (1977) MR0614155DOI10.1016/0021-9045(77)90029-6
  3. Approximation by Faber-Laurent rational functions in the mean of functions of the class  L p ( Γ ) with 1 < p < , Approximation Theory App. 11 (1995), 105–118. (1995) MR1341424
  4. 10.24033/asens.1469, Ann. Sci. Ecol. Norm. Super. 4 (1984), 157–189. (1984) MR0744071DOI10.24033/asens.1469
  5. Theory of H p -Spaces, Academic Press, , 1970. (1970) MR0268655
  6. Weighted estimates for singular integrals and their applications, In: Mathematical analysis, Vol. 21, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1983, pp. 42–129. (Russian) (1983) MR0736522
  7. Lectures on Complex Approximation, Birkhäuser-Verlag, Boston-Stuttgart, 1987. (1987) Zbl0612.30003MR0894920
  8. Geometric Theory of Functions of a Complex Variable, Translation of Mathematical Monographs, Vol. 26, AMS, 1969. (1969) MR0247039
  9. Investigation of the properties of functions with quasimonotone Fourier coefficients in generalized Nikolsky-Besov spaces. Author’s summary of candidates dissertation, (1986), Tbilisi. (Russian) (1986) 
  10. A constructive characterization of a certain class of functions, Dokl. Akad. Nauk SSSR 223 (1975), 35–37. (1975) MR0470218
  11. Approximate properties of the generalized Faber series in an integral metric, Izv. Akad. Nauk Az. SSR, Ser. Fiz.-Tekh. Math. Nauk 2 (1987), 10–14. (Russian) (1987) Zbl0655.30023MR0946314
  12. 10.1007/s003650010030, Constr. Approx. 17 (2001), 335–351. (2001) MR1828916DOI10.1007/s003650010030
  13. A direct theorem on mean approximation of analytic functions by polynomials, Soviet Math. Dokl. 10 (1969), 411–414. (1969) Zbl0212.09901
  14. Theory of Analytic Functions, Vol.  2, Izdatelstvo Nauka, Moscow, 1968. (1968) 
  15. 10.1090/S0002-9947-1972-0293384-6, Trans. Amer. Math. Soc. 165 (1972), 207–226. (1972) MR0293384DOI10.1090/S0002-9947-1972-0293384-6
  16. Series of Faber Polynomials, Nauka, Moscow, 1984; Cordon and Breach Publishers, 1998. (1984; Cordon and Breach Publishers, 1998) Zbl0936.30026MR0774773
  17. 10.1090/S0002-9947-1959-0108595-3, Trans. Amer. Math. Soc. 92 (1959), 355–370. (1959) MR0108595DOI10.1090/S0002-9947-1959-0108595-3
  18. Best approximation on the unit sphere in  R n , Funct. Anal. and Approx. Proc. Conf. Oberwolfach. Aug. 9-16, 1980, Basel, 1981, pp. 233–245. (1981) Zbl0529.41024MR0650278

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.