Natural operators lifting vector fields to bundles of Weil contact elements
Miroslav Kureš; Włodzimierz M. Mikulski
Czechoslovak Mathematical Journal (2004)
- Volume: 54, Issue: 4, page 855-867
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKureš, Miroslav, and Mikulski, Włodzimierz M.. "Natural operators lifting vector fields to bundles of Weil contact elements." Czechoslovak Mathematical Journal 54.4 (2004): 855-867. <http://eudml.org/doc/30905>.
@article{Kureš2004,
abstract = {Let $A$ be a Weil algebra. The bijection between all natural operators lifting vector fields from $m$-manifolds to the bundle functor $K^A$ of Weil contact elements and the subalgebra of fixed elements $SA$ of the Weil algebra $A$ is determined and the bijection between all natural affinors on $K^A$ and $SA$ is deduced. Furthermore, the rigidity of the functor $K^A$ is proved. Requisite results about the structure of $SA$ are obtained by a purely algebraic approach, namely the existence of nontrivial $SA$ is discussed.},
author = {Kureš, Miroslav, Mikulski, Włodzimierz M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Weil algebra; Weil bundle; contact element; natural operator; Weil algebra; Weil bundle; contact element; natural operator},
language = {eng},
number = {4},
pages = {855-867},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Natural operators lifting vector fields to bundles of Weil contact elements},
url = {http://eudml.org/doc/30905},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Kureš, Miroslav
AU - Mikulski, Włodzimierz M.
TI - Natural operators lifting vector fields to bundles of Weil contact elements
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 4
SP - 855
EP - 867
AB - Let $A$ be a Weil algebra. The bijection between all natural operators lifting vector fields from $m$-manifolds to the bundle functor $K^A$ of Weil contact elements and the subalgebra of fixed elements $SA$ of the Weil algebra $A$ is determined and the bijection between all natural affinors on $K^A$ and $SA$ is deduced. Furthermore, the rigidity of the functor $K^A$ is proved. Requisite results about the structure of $SA$ are obtained by a purely algebraic approach, namely the existence of nontrivial $SA$ is discussed.
LA - eng
KW - Weil algebra; Weil bundle; contact element; natural operator; Weil algebra; Weil bundle; contact element; natural operator
UR - http://eudml.org/doc/30905
ER -
References
top- Jet manifolds associated to a Weil bundle, Arch. Math. (Brno) 36 (2000), 195–199. (2000) MR1785036
- Natural affinors on time-dependent Weil bundles, Arch. Math. (Brno) 27 (1991), 205–209. (1991) MR1189217
- Introduction à la théorie des structures infinitésimales et des pseudo-groupes de Lie, (1953), Colloque du C.N.R.S., Strasbourg, 97–110. (1953) MR0063123
- 10.1017/S0027763000004931, Nagoya Math. J. 135 (1994), 1–41. (1994) MR1295815DOI10.1017/S0027763000004931
- 10.1017/S0027763000007339, Nagoya Math. J. 158 (2000), 99–106. (2000) MR1766571DOI10.1017/S0027763000007339
- 10.1007/BF00133034, Ann. Glob. Anal. Geom. 6 (1988), 109–117. (1988) MR0982760DOI10.1007/BF00133034
- Natural Operations in Differential Geometry, Springer Verlag, 1993. (1993) MR1202431
- 10.1023/B:CMAJ.0000024538.28153.47, Czechoslovak Math. J 53(128) (2003), 1017–1030. (2003) MR2018847DOI10.1023/B:CMAJ.0000024538.28153.47
- 10.1090/conm/288/04850, Contemp. Math. 288 (2001), 358–362. (2001) MR1871033DOI10.1090/conm/288/04850
- Natural differential operators between some natural bundles, Math. Bohem. 118(2) (1993), 153–161. (1993) Zbl0777.58004MR1223480
- 10.4310/jdg/1214433720, J. Differential Geom. 11 (1976), 479–498. (1976) MR0445422DOI10.4310/jdg/1214433720
- 10.1023/A:1022408527395, Czechoslovak Math. J. 50 (2000), 721–748. (2000) MR1792967DOI10.1023/A:1022408527395
- On quasijet bundles, Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), 187–196. (2000) MR1764094
- Théorie des points sur les variétés différentiables, Topologie et Géométrie Différentielle, Colloque du C.N.R.S., Strasbourg, 1953, pp. 111–117. (1953) MR0061455
- Commutative algebra, Vol. II, D. Van Nostrand Company, 1960. (1960) MR0120249
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.