Natural operators lifting vector fields to bundles of Weil contact elements

Miroslav Kureš; Włodzimierz M. Mikulski

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 4, page 855-867
  • ISSN: 0011-4642

Abstract

top
Let A be a Weil algebra. The bijection between all natural operators lifting vector fields from m -manifolds to the bundle functor K A of Weil contact elements and the subalgebra of fixed elements S A of the Weil algebra A is determined and the bijection between all natural affinors on K A and S A is deduced. Furthermore, the rigidity of the functor K A is proved. Requisite results about the structure of S A are obtained by a purely algebraic approach, namely the existence of nontrivial S A is discussed.

How to cite

top

Kureš, Miroslav, and Mikulski, Włodzimierz M.. "Natural operators lifting vector fields to bundles of Weil contact elements." Czechoslovak Mathematical Journal 54.4 (2004): 855-867. <http://eudml.org/doc/30905>.

@article{Kureš2004,
abstract = {Let $A$ be a Weil algebra. The bijection between all natural operators lifting vector fields from $m$-manifolds to the bundle functor $K^A$ of Weil contact elements and the subalgebra of fixed elements $SA$ of the Weil algebra $A$ is determined and the bijection between all natural affinors on $K^A$ and $SA$ is deduced. Furthermore, the rigidity of the functor $K^A$ is proved. Requisite results about the structure of $SA$ are obtained by a purely algebraic approach, namely the existence of nontrivial $SA$ is discussed.},
author = {Kureš, Miroslav, Mikulski, Włodzimierz M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Weil algebra; Weil bundle; contact element; natural operator; Weil algebra; Weil bundle; contact element; natural operator},
language = {eng},
number = {4},
pages = {855-867},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Natural operators lifting vector fields to bundles of Weil contact elements},
url = {http://eudml.org/doc/30905},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Kureš, Miroslav
AU - Mikulski, Włodzimierz M.
TI - Natural operators lifting vector fields to bundles of Weil contact elements
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 4
SP - 855
EP - 867
AB - Let $A$ be a Weil algebra. The bijection between all natural operators lifting vector fields from $m$-manifolds to the bundle functor $K^A$ of Weil contact elements and the subalgebra of fixed elements $SA$ of the Weil algebra $A$ is determined and the bijection between all natural affinors on $K^A$ and $SA$ is deduced. Furthermore, the rigidity of the functor $K^A$ is proved. Requisite results about the structure of $SA$ are obtained by a purely algebraic approach, namely the existence of nontrivial $SA$ is discussed.
LA - eng
KW - Weil algebra; Weil bundle; contact element; natural operator; Weil algebra; Weil bundle; contact element; natural operator
UR - http://eudml.org/doc/30905
ER -

References

top
  1. Jet manifolds associated to a Weil bundle, Arch. Math. (Brno) 36 (2000), 195–199. (2000) MR1785036
  2. Natural affinors on time-dependent Weil bundles, Arch. Math. (Brno) 27 (1991), 205–209. (1991) MR1189217
  3. Introduction à la théorie des structures infinitésimales et des pseudo-groupes de Lie, (1953), Colloque du C.N.R.S., Strasbourg, 97–110. (1953) MR0063123
  4. 10.1017/S0027763000004931, Nagoya Math. J. 135 (1994), 1–41. (1994) MR1295815DOI10.1017/S0027763000004931
  5. 10.1017/S0027763000007339, Nagoya Math. J. 158 (2000), 99–106. (2000) MR1766571DOI10.1017/S0027763000007339
  6. 10.1007/BF00133034, Ann. Glob. Anal. Geom. 6 (1988), 109–117. (1988) MR0982760DOI10.1007/BF00133034
  7. Natural Operations in Differential Geometry, Springer Verlag, 1993. (1993) MR1202431
  8. 10.1023/B:CMAJ.0000024538.28153.47, Czechoslovak Math. J 53(128) (2003), 1017–1030. (2003) MR2018847DOI10.1023/B:CMAJ.0000024538.28153.47
  9. 10.1090/conm/288/04850, Contemp. Math. 288 (2001), 358–362. (2001) MR1871033DOI10.1090/conm/288/04850
  10. Natural differential operators between some natural bundles, Math. Bohem. 118(2) (1993), 153–161. (1993) Zbl0777.58004MR1223480
  11. 10.4310/jdg/1214433720, J. Differential Geom. 11 (1976), 479–498. (1976) MR0445422DOI10.4310/jdg/1214433720
  12. 10.1023/A:1022408527395, Czechoslovak Math. J. 50 (2000), 721–748. (2000) MR1792967DOI10.1023/A:1022408527395
  13. On quasijet bundles, Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), 187–196. (2000) MR1764094
  14. Théorie des points sur les variétés différentiables, Topologie et Géométrie Différentielle, Colloque du C.N.R.S., Strasbourg, 1953, pp. 111–117. (1953) MR0061455
  15. Commutative algebra, Vol. II, D. Van Nostrand Company, 1960. (1960) MR0120249

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.