Contact elements on fibered manifolds
Ivan Kolář; Włodzimierz M. Mikulski
Czechoslovak Mathematical Journal (2003)
- Volume: 53, Issue: 4, page 1017-1030
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKolář, Ivan, and Mikulski, Włodzimierz M.. "Contact elements on fibered manifolds." Czechoslovak Mathematical Journal 53.4 (2003): 1017-1030. <http://eudml.org/doc/30832>.
@article{Kolář2003,
abstract = {For every product preserving bundle functor $T^\mu $ on fibered manifolds, we describe the underlying functor of any order $(r,s,q), s\ge r\le q$. We define the bundle $K_\{k,l\}^\{r,s,q\} Y$ of $(k,l)$-dimensional contact elements of the order $(r,s,q)$ on a fibered manifold $Y$ and we characterize its elements geometrically. Then we study the bundle of general contact elements of type $\mu $. We also determine all natural transformations of $K_\{k,l\}^\{r,s,q\} Y$ into itself and of $T(K_\{k,l\}^\{r,s,q\} Y)$ into itself and we find all natural operators lifting projectable vector fields and horizontal one-forms from $Y$ to $K_\{k,l\}^\{r,s,q\} Y$.},
author = {Kolář, Ivan, Mikulski, Włodzimierz M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {jet of fibered manifold morphism; contact element; Weil bundle; natural operator; jet of fibered manifold morphism; contact element; Weil bundle; natural operator},
language = {eng},
number = {4},
pages = {1017-1030},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Contact elements on fibered manifolds},
url = {http://eudml.org/doc/30832},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Kolář, Ivan
AU - Mikulski, Włodzimierz M.
TI - Contact elements on fibered manifolds
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 4
SP - 1017
EP - 1030
AB - For every product preserving bundle functor $T^\mu $ on fibered manifolds, we describe the underlying functor of any order $(r,s,q), s\ge r\le q$. We define the bundle $K_{k,l}^{r,s,q} Y$ of $(k,l)$-dimensional contact elements of the order $(r,s,q)$ on a fibered manifold $Y$ and we characterize its elements geometrically. Then we study the bundle of general contact elements of type $\mu $. We also determine all natural transformations of $K_{k,l}^{r,s,q} Y$ into itself and of $T(K_{k,l}^{r,s,q} Y)$ into itself and we find all natural operators lifting projectable vector fields and horizontal one-forms from $Y$ to $K_{k,l}^{r,s,q} Y$.
LA - eng
KW - jet of fibered manifold morphism; contact element; Weil bundle; natural operator; jet of fibered manifold morphism; contact element; Weil bundle; natural operator
UR - http://eudml.org/doc/30832
ER -
References
top- Jet manifold associated to a Weil bundle, Arch. Math. (Brno) 36 (2000), 195–199. (2000) Zbl1049.58007MR1785036
- Prolongation of projectable tangent valued forms, To appear in Rendiconti Palermo. MR1942654
- On the jets of fibered manifold morphisms, Cahiers Topo. Géom. Diff. Catégoriques XL (1999), 21–30. (1999) MR1682575
- Oeuvres complètes et commentées. Parties I-A et I-2, Cahiers Topo. Géom. Diff. XXIV (1983). (1983)
- 10.1017/S0027763000007339, Nagoya Math. J. 158 (2000), 99–106. (2000) MR1766571DOI10.1017/S0027763000007339
- Covariant approach to natural transformations of Weil functors, Comment. Math. Univ. Carolin. 27 (1986), 723–729. (1986) MR0874666
- Natural Operations in Differential Geometry, Springer-Verlag, 1993. (1993) MR1202431
- Natural lifting of connections to vertical bundles, Supplemento ai Rendiconti del Circolo Mat. di Palermo, Serie II 63 (2000), 97–102. (2000) MR1758084
- 10.1007/BF01292769, Mh. Math. 119 (1995), 63–77. (1995) Zbl0823.58004MR1315684DOI10.1007/BF01292769
- Product preserving bundle functors on fibered manifolds, Arch. Math. (Brno) 32 (1996), 307–316. (1996) Zbl0881.58002MR1441401
- 10.1023/A:1022408527395, Czechoslovak Math. J. 50 (2000), 721–748. (2000) MR1792967DOI10.1023/A:1022408527395
- Natural operators transforming projectable vector fields to products preserving bundles, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II 59 (1999), 181–187. (1999) MR1692269
- Théorie des points proches sur les variétés différentielles, Collogue de C.N.R.S, Strasbourg, 1953, pp. 111–117. (1953) MR0061455
Citations in EuDML Documents
top- Miroslav Kureš, Włodzimierz M. Mikulski, Natural operators lifting vector fields to bundles of Weil contact elements
- Jan Kurek, Włodzimierz Mikulski, The natural functions on the cotangent bundle of higher order vector tangent bundles over fibered manifolds
- Miroslav Doupovec, Ivan Kolář, Włodzimierz M. Mikulski, On the jets of foliation respecting maps
- Jan Kurek, Włodzimierz M. Mikulski, The natural affinors on some fiber product preserving gauge bundle functors of vector bundles
- Włodzimierz M. Mikulski, Natural affinors on
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.