A note on ultrametric matrices

Xiao-Dong Zhang

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 4, page 929-940
  • ISSN: 0011-4642

Abstract

top
It is proved in this paper that special generalized ultrametric and special matrices are, in a sense, extremal matrices in the boundary of the set of generalized ultrametric and matrices, respectively. Moreover, we present a new class of inverse -matrices which generalizes the class of matrices.

How to cite

top

Zhang, Xiao-Dong. "A note on ultrametric matrices." Czechoslovak Mathematical Journal 54.4 (2004): 929-940. <http://eudml.org/doc/30911>.

@article{Zhang2004,
abstract = {It is proved in this paper that special generalized ultrametric and special $\mathcal \{U\}$ matrices are, in a sense, extremal matrices in the boundary of the set of generalized ultrametric and $ \mathcal \{U\}$ matrices, respectively. Moreover, we present a new class of inverse $M$-matrices which generalizes the class of $\mathcal \{U\}$ matrices.},
author = {Zhang, Xiao-Dong},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized ultrametric matrix; $ \mathcal \{U\}$ matrix; weighted graph; inverse $M$-matrix; generalized ultrametric matrix; matrix; weighted graph; inverse -matrix},
language = {eng},
number = {4},
pages = {929-940},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on ultrametric matrices},
url = {http://eudml.org/doc/30911},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Zhang, Xiao-Dong
TI - A note on ultrametric matrices
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 4
SP - 929
EP - 940
AB - It is proved in this paper that special generalized ultrametric and special $\mathcal {U}$ matrices are, in a sense, extremal matrices in the boundary of the set of generalized ultrametric and $ \mathcal {U}$ matrices, respectively. Moreover, we present a new class of inverse $M$-matrices which generalizes the class of $\mathcal {U}$ matrices.
LA - eng
KW - generalized ultrametric matrix; $ \mathcal {U}$ matrix; weighted graph; inverse $M$-matrix; generalized ultrametric matrix; matrix; weighted graph; inverse -matrix
UR - http://eudml.org/doc/30911
ER -

References

top
  1. Nonnegative Matrices in the Mathematical Sciences, Academic, 1979; SIAM, 1994. (1979; SIAM, 1994) MR1298430
  2. Inverse -matrices, Linear Algebra Appl. 47 (1982), 159–216. (1982) Zbl0488.15011MR0672744
  3. 10.1006/aama.1996.0009, Adv. in Appl. Math. 17 (1996), 169–183. (1996) MR1390573DOI10.1006/aama.1996.0009
  4. Description of the sub-Markov kernel associated to generalized ultrametric matrices: an algorithmic approach, Linear Algebra Appl. 318 (2000), 1–21. (2000) MR1787220
  5. Some characterizations of symmmetric inverse -matrices, Linear Algebra Appl. 275–276 (1998), 179–187. (1998) MR1628388
  6. 10.1137/S0895479899350988, SIAM J.  Matrix Anal. Appl. (electronic) 22 (2000), 106–113. (2000) Zbl0967.15013MR1779719DOI10.1137/S0895479899350988
  7. 10.1016/0024-3795(87)90061-9, Linear Algebra Appl. 91 (1987), 75–81. (1987) MR0888480DOI10.1016/0024-3795(87)90061-9
  8. 10.1137/S0895479891217011, SIAM J. Matrix Anal. Appl. 15 (1994), 98–106. (1994) MR1257619DOI10.1137/S0895479891217011
  9. Inverse tridiagonal -matrices, Linear and Multilinear Algebra 45 (1998), 75–97. (1998) MR1665619
  10. Inverse -matrix inequalities and generalized ultrametric matrices, Linear Algebra Appl. 220 (1995), 329–349. (1995) MR1334583
  11. A class of inverse -matrices, Electron. J. Linear Algebra 7 (2000), 53–58. (2000) Zbl0956.15012MR1766201
  12. 10.1137/S0895479892228237, SIAM J. Matrix Anal. Appl. 15 (1994), 107–113. (1994) MR1257620DOI10.1137/S0895479892228237
  13. Generalized ultrametric matrices—a class of inverse -matrices, Linear Algebra Appl. 220 (1995), 365–390. (1995) MR1334586
  14. A conjecture concerning the Hadamard product of inverse of -matrices, Linear Algebra Appl. 285 (1995), 277–290. (1995) MR1653539
  15. 10.1016/0024-3795(77)90081-7, Linear Algebra Appl. 18 (1977), 75–94. (1977) Zbl0355.15006MR0472874DOI10.1016/0024-3795(77)90081-7

NotesEmbed ?

top

You must be logged in to post comments.