Integral averages and oscillation of second order sublinear differential equations

Jelena V. Manojlović

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 1, page 41-60
  • ISSN: 0011-4642

Abstract

top
New oscillation criteria are given for the second order sublinear differential equation [ a ( t ) ψ ( x ( t ) ) x ' ( t ) ] ' + q ( t ) f ( x ( t ) ) = 0 , t t 0 > 0 , where a C 1 ( [ t 0 , ) ) is a nonnegative function, ψ , f C ( ) with ψ ( x ) 0 , x f ( x ) / ψ ( x ) > 0 for x 0 , ψ , f have continuous derivative on { 0 } with [ f ( x ) / ψ ( x ) ] ' 0 for x 0 and q C ( [ t 0 , ) ) has no restriction on its sign. This oscillation criteria involve integral averages of the coefficients q and a and extend known oscillation criteria for the equation x ' ' ( t ) + q ( t ) x ( t ) = 0 .

How to cite

top

Manojlović, Jelena V.. "Integral averages and oscillation of second order sublinear differential equations." Czechoslovak Mathematical Journal 55.1 (2005): 41-60. <http://eudml.org/doc/30926>.

@article{Manojlović2005,
abstract = {New oscillation criteria are given for the second order sublinear differential equation \[ [a(t)\psi (x(t))x^\{\prime \}(t)]^\{\prime \}+q(t)f(x(t))=0, \quad t\ge t\_0>0, \] where $a\in C^1([t_0,\infty ))$ is a nonnegative function, $\psi , f\in C(\{\mathbb \{R\}\})$ with $\psi (x)\ne 0$, $xf(x)/\psi (x)>0$ for $x\ne 0$, $\psi $, $f$ have continuous derivative on $\{\mathbb \{R\}\}\setminus \lbrace 0\rbrace $ with $[f(x)/\psi (x)]^\{\prime \}\ge 0$ for $x\ne 0$ and $q\in C([t_0,\infty ))$ has no restriction on its sign. This oscillation criteria involve integral averages of the coefficients $q$ and $a$ and extend known oscillation criteria for the equation $x^\{\prime \prime \}(t)+q(t)x(t)=0$.},
author = {Manojlović, Jelena V.},
journal = {Czechoslovak Mathematical Journal},
keywords = {oscillation; sublinear differential equation; integral averages; oscillation; sublinear differential equation; integral averages},
language = {eng},
number = {1},
pages = {41-60},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Integral averages and oscillation of second order sublinear differential equations},
url = {http://eudml.org/doc/30926},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Manojlović, Jelena V.
TI - Integral averages and oscillation of second order sublinear differential equations
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 1
SP - 41
EP - 60
AB - New oscillation criteria are given for the second order sublinear differential equation \[ [a(t)\psi (x(t))x^{\prime }(t)]^{\prime }+q(t)f(x(t))=0, \quad t\ge t_0>0, \] where $a\in C^1([t_0,\infty ))$ is a nonnegative function, $\psi , f\in C({\mathbb {R}})$ with $\psi (x)\ne 0$, $xf(x)/\psi (x)>0$ for $x\ne 0$, $\psi $, $f$ have continuous derivative on ${\mathbb {R}}\setminus \lbrace 0\rbrace $ with $[f(x)/\psi (x)]^{\prime }\ge 0$ for $x\ne 0$ and $q\in C([t_0,\infty ))$ has no restriction on its sign. This oscillation criteria involve integral averages of the coefficients $q$ and $a$ and extend known oscillation criteria for the equation $x^{\prime \prime }(t)+q(t)x(t)=0$.
LA - eng
KW - oscillation; sublinear differential equation; integral averages; oscillation; sublinear differential equation; integral averages
UR - http://eudml.org/doc/30926
ER -

References

top
  1. 10.1016/S0898-1221(02)00167-0, Comput. Math. Appl. 44 (2002), 529–538. (2002) MR1912848DOI10.1016/S0898-1221(02)00167-0
  2. On the oscillation of nonlinear second order equations, J.  South China Normal Univ. Natur. Sci. Ed. 2 (1986), 99–103. (1986) MR1005446
  3. On the second order nonlinear oscillations, Bull. Inst. Math. Acad. Sinica 15 (1987), 297–309. (1987) MR0942790
  4. 10.1002/mana.19891410114, Math. Nachr. 141 (1989), 117–127. (1989) Zbl0673.34041MR1014421DOI10.1002/mana.19891410114
  5. 10.1016/0022-247X(90)90301-U, J.  Math. Anal. and Appl. 149 (1990), 277–311. (1990) MR1054809DOI10.1016/0022-247X(90)90301-U
  6. 10.1016/0022-247X(92)90386-R, J.  Math. Anal. and Appl. 171 (1992), 220–241. (1992) Zbl0767.34017MR1192503DOI10.1016/0022-247X(92)90386-R
  7. 10.1006/jmaa.2000.6975, J.  Math. Anal. Appl. 250 (2000), 118–138. (2000) MR1893881DOI10.1006/jmaa.2000.6975
  8. 10.1090/S0002-9939-1982-0643744-8, Proc. Amer. Math. Soc. 84 (1982), 535–538. (1982) MR0643744DOI10.1090/S0002-9939-1982-0643744-8
  9. 10.1137/0514040, SIAM J.  Math. Anal. 14 (1983), 474–476. (1983) MR0697523DOI10.1137/0514040
  10. Oscillation of second order sublinear differential equations, Dynamic Systems Appl. 6 (1997), 529–534. (1997) MR1487476
  11. 10.1016/S0895-7177(99)00151-X, Math. Comp. Modelling 30 (1999), 109–119. (1999) MR1753568DOI10.1016/S0895-7177(99)00151-X
  12. 10.1016/S0898-1221(00)00094-8, Computers and Mathematics with Applications 39 (2000), 161–172. (2000) DOI10.1016/S0898-1221(00)00094-8
  13. 10.1016/S0898-1221(01)00117-1, Computers and Mathematics with Applications 41 (2001), 1521–1534. (2001) MR1831815DOI10.1016/S0898-1221(01)00117-1
  14. 10.1016/0362-546X(83)90016-0, Nonlinear Anal. 7 (1983), 1071–1080. (1983) Zbl0525.34028MR0719359DOI10.1016/0362-546X(83)90016-0
  15. 10.1007/BF02192675, Aequationes Math. 27 (1984), 242–254. (1984) Zbl0545.34026MR0762684DOI10.1007/BF02192675
  16. 10.1017/S1446788700026549, J.  Austral. Math. Soc. (Series  A) 40 (1986), 111–130. (1986) Zbl0583.34028MR0809730DOI10.1017/S1446788700026549
  17. 10.1007/BF01324723, Arch. Math. (Basel) 53 (1989), 482–492. (1989) Zbl0661.34030MR1019162DOI10.1007/BF01324723
  18. Integral averages and oscillation of second order sublinear differential equations, Diff. Integ. Equat. 4 (1991), 205–213. (1991) Zbl0721.34026MR1079621
  19. 10.1016/0022-247X(84)90034-9, J.  Math. Anal. and Appl. 104 (1984), 103–106. (1984) Zbl0609.34045MR0765043DOI10.1016/0022-247X(84)90034-9
  20. An oscillation criterion for second order sublinear differential equations, Conf. Proc. Canad. Math. Soc. 8 (1987), 299–302. (1987) Zbl0624.34027MR0909919
  21. 10.1016/0022-247X(92)90348-H, J.  Math. Anal. Appl. 171 (1992), 346–351. (1992) MR1194084DOI10.1016/0022-247X(92)90348-H
  22. 10.1006/jmaa.2000.6855, J.  Math. Anal. Appl. 247 (2000), 489–505. (2000) Zbl0964.34028MR1769091DOI10.1006/jmaa.2000.6855

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.