Integral averages and oscillation of second order sublinear differential equations
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 1, page 41-60
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topManojlović, Jelena V.. "Integral averages and oscillation of second order sublinear differential equations." Czechoslovak Mathematical Journal 55.1 (2005): 41-60. <http://eudml.org/doc/30926>.
@article{Manojlović2005,
abstract = {New oscillation criteria are given for the second order sublinear differential equation \[ [a(t)\psi (x(t))x^\{\prime \}(t)]^\{\prime \}+q(t)f(x(t))=0, \quad t\ge t\_0>0, \]
where $a\in C^1([t_0,\infty ))$ is a nonnegative function, $\psi , f\in C(\{\mathbb \{R\}\})$ with $\psi (x)\ne 0$, $xf(x)/\psi (x)>0$ for $x\ne 0$, $\psi $, $f$ have continuous derivative on $\{\mathbb \{R\}\}\setminus \lbrace 0\rbrace $ with $[f(x)/\psi (x)]^\{\prime \}\ge 0$ for $x\ne 0$ and $q\in C([t_0,\infty ))$ has no restriction on its sign. This oscillation criteria involve integral averages of the coefficients $q$ and $a$ and extend known oscillation criteria for the equation $x^\{\prime \prime \}(t)+q(t)x(t)=0$.},
author = {Manojlović, Jelena V.},
journal = {Czechoslovak Mathematical Journal},
keywords = {oscillation; sublinear differential equation; integral averages; oscillation; sublinear differential equation; integral averages},
language = {eng},
number = {1},
pages = {41-60},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Integral averages and oscillation of second order sublinear differential equations},
url = {http://eudml.org/doc/30926},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Manojlović, Jelena V.
TI - Integral averages and oscillation of second order sublinear differential equations
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 1
SP - 41
EP - 60
AB - New oscillation criteria are given for the second order sublinear differential equation \[ [a(t)\psi (x(t))x^{\prime }(t)]^{\prime }+q(t)f(x(t))=0, \quad t\ge t_0>0, \]
where $a\in C^1([t_0,\infty ))$ is a nonnegative function, $\psi , f\in C({\mathbb {R}})$ with $\psi (x)\ne 0$, $xf(x)/\psi (x)>0$ for $x\ne 0$, $\psi $, $f$ have continuous derivative on ${\mathbb {R}}\setminus \lbrace 0\rbrace $ with $[f(x)/\psi (x)]^{\prime }\ge 0$ for $x\ne 0$ and $q\in C([t_0,\infty ))$ has no restriction on its sign. This oscillation criteria involve integral averages of the coefficients $q$ and $a$ and extend known oscillation criteria for the equation $x^{\prime \prime }(t)+q(t)x(t)=0$.
LA - eng
KW - oscillation; sublinear differential equation; integral averages; oscillation; sublinear differential equation; integral averages
UR - http://eudml.org/doc/30926
ER -
References
top- 10.1016/S0898-1221(02)00167-0, Comput. Math. Appl. 44 (2002), 529–538. (2002) MR1912848DOI10.1016/S0898-1221(02)00167-0
- On the oscillation of nonlinear second order equations, J. South China Normal Univ. Natur. Sci. Ed. 2 (1986), 99–103. (1986) MR1005446
- On the second order nonlinear oscillations, Bull. Inst. Math. Acad. Sinica 15 (1987), 297–309. (1987) MR0942790
- 10.1002/mana.19891410114, Math. Nachr. 141 (1989), 117–127. (1989) Zbl0673.34041MR1014421DOI10.1002/mana.19891410114
- 10.1016/0022-247X(90)90301-U, J. Math. Anal. and Appl. 149 (1990), 277–311. (1990) MR1054809DOI10.1016/0022-247X(90)90301-U
- 10.1016/0022-247X(92)90386-R, J. Math. Anal. and Appl. 171 (1992), 220–241. (1992) Zbl0767.34017MR1192503DOI10.1016/0022-247X(92)90386-R
- 10.1006/jmaa.2000.6975, J. Math. Anal. Appl. 250 (2000), 118–138. (2000) MR1893881DOI10.1006/jmaa.2000.6975
- 10.1090/S0002-9939-1982-0643744-8, Proc. Amer. Math. Soc. 84 (1982), 535–538. (1982) MR0643744DOI10.1090/S0002-9939-1982-0643744-8
- 10.1137/0514040, SIAM J. Math. Anal. 14 (1983), 474–476. (1983) MR0697523DOI10.1137/0514040
- Oscillation of second order sublinear differential equations, Dynamic Systems Appl. 6 (1997), 529–534. (1997) MR1487476
- 10.1016/S0895-7177(99)00151-X, Math. Comp. Modelling 30 (1999), 109–119. (1999) MR1753568DOI10.1016/S0895-7177(99)00151-X
- 10.1016/S0898-1221(00)00094-8, Computers and Mathematics with Applications 39 (2000), 161–172. (2000) DOI10.1016/S0898-1221(00)00094-8
- 10.1016/S0898-1221(01)00117-1, Computers and Mathematics with Applications 41 (2001), 1521–1534. (2001) MR1831815DOI10.1016/S0898-1221(01)00117-1
- 10.1016/0362-546X(83)90016-0, Nonlinear Anal. 7 (1983), 1071–1080. (1983) Zbl0525.34028MR0719359DOI10.1016/0362-546X(83)90016-0
- 10.1007/BF02192675, Aequationes Math. 27 (1984), 242–254. (1984) Zbl0545.34026MR0762684DOI10.1007/BF02192675
- 10.1017/S1446788700026549, J. Austral. Math. Soc. (Series A) 40 (1986), 111–130. (1986) Zbl0583.34028MR0809730DOI10.1017/S1446788700026549
- 10.1007/BF01324723, Arch. Math. (Basel) 53 (1989), 482–492. (1989) Zbl0661.34030MR1019162DOI10.1007/BF01324723
- Integral averages and oscillation of second order sublinear differential equations, Diff. Integ. Equat. 4 (1991), 205–213. (1991) Zbl0721.34026MR1079621
- 10.1016/0022-247X(84)90034-9, J. Math. Anal. and Appl. 104 (1984), 103–106. (1984) Zbl0609.34045MR0765043DOI10.1016/0022-247X(84)90034-9
- An oscillation criterion for second order sublinear differential equations, Conf. Proc. Canad. Math. Soc. 8 (1987), 299–302. (1987) Zbl0624.34027MR0909919
- 10.1016/0022-247X(92)90348-H, J. Math. Anal. Appl. 171 (1992), 346–351. (1992) MR1194084DOI10.1016/0022-247X(92)90348-H
- 10.1006/jmaa.2000.6855, J. Math. Anal. Appl. 247 (2000), 489–505. (2000) Zbl0964.34028MR1769091DOI10.1006/jmaa.2000.6855
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.