Weighted inequalities for integral operators with some homogeneous kernels
María Silvina Riveros; Marta Urciuolo
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 2, page 423-432
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRiveros, María Silvina, and Urciuolo, Marta. "Weighted inequalities for integral operators with some homogeneous kernels." Czechoslovak Mathematical Journal 55.2 (2005): 423-432. <http://eudml.org/doc/30955>.
@article{Riveros2005,
abstract = {In this paper we study integral operators of the form \[ Tf(x)=\int | x-a\_1y|^\{-\alpha \_1\}\dots | x-a\_my|^\{-\alpha \_m\}f(y)\mathrm \{d\}y, \]$\alpha _1+\dots +\alpha _m=n$. We obtain the $L^p(w)$ boundedness for them, and a weighted $(1,1)$ inequality for weights $w$ in $A_p$ satisfying that there exists $c\ge 1$ such that $w( a_ix) \le cw( x)$ for a.e. $x\in \mathbb \{R\}^n$, $1\le i\le m$. Moreover, we prove $\Vert Tf\Vert _\{\{\mathrm \{B\}MO\}\}\le c\Vert f\Vert _\infty $ for a wide family of functions $f\in L^\infty ( \mathbb \{R\}^n)$.},
author = {Riveros, María Silvina, Urciuolo, Marta},
journal = {Czechoslovak Mathematical Journal},
keywords = {weights; integral operators; weights; integral operators; -boundedness},
language = {eng},
number = {2},
pages = {423-432},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weighted inequalities for integral operators with some homogeneous kernels},
url = {http://eudml.org/doc/30955},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Riveros, María Silvina
AU - Urciuolo, Marta
TI - Weighted inequalities for integral operators with some homogeneous kernels
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 2
SP - 423
EP - 432
AB - In this paper we study integral operators of the form \[ Tf(x)=\int | x-a_1y|^{-\alpha _1}\dots | x-a_my|^{-\alpha _m}f(y)\mathrm {d}y, \]$\alpha _1+\dots +\alpha _m=n$. We obtain the $L^p(w)$ boundedness for them, and a weighted $(1,1)$ inequality for weights $w$ in $A_p$ satisfying that there exists $c\ge 1$ such that $w( a_ix) \le cw( x)$ for a.e. $x\in \mathbb {R}^n$, $1\le i\le m$. Moreover, we prove $\Vert Tf\Vert _{{\mathrm {B}MO}}\le c\Vert f\Vert _\infty $ for a wide family of functions $f\in L^\infty ( \mathbb {R}^n)$.
LA - eng
KW - weights; integral operators; weights; integral operators; -boundedness
UR - http://eudml.org/doc/30955
ER -
References
top- 10.4064/sm-51-3-241-250, Studia Math. 51 (1974), 241–250. (1974) MR0358205DOI10.4064/sm-51-3-241-250
- Análisis de Fourier, Ediciones de la Universidad Autónoma de Madrid, Editorial Siglo XXI, 1990. (1990)
- About the boundedness of some integral operators, Revista de la UMA 38 (1993), 192–195. (1993) MR1276023
- 10.1023/A:1026437621978, Acta Math. Hungar. 82 (1999), 99–105. (1999) MR1658586DOI10.1023/A:1026437621978
- 10.1002/cpa.3160140317, Comm. Pure Appl. Math. 14 (1961), 415–426. (1961) MR0131498DOI10.1002/cpa.3160140317
- 10.1090/S0002-9947-1972-0293384-6, Trans. Amer. Math. Soc. 165 (1972), 207–226. (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
- Two parameter maximal functions in the Heisenberg group, Math. Z. 199 (1988), 565–575. (1988) MR0968322
- 10.4064/sm156-3-3, Studia Math. 156 (2003), 243–260. (2003) MR1978442DOI10.4064/sm156-3-3
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.