Weighted inequalities for integral operators with some homogeneous kernels

María Silvina Riveros; Marta Urciuolo

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 2, page 423-432
  • ISSN: 0011-4642

Abstract

top
In this paper we study integral operators of the form T f ( x ) = | x - a 1 y | - α 1 | x - a m y | - α m f ( y ) d y , α 1 + + α m = n . We obtain the L p ( w ) boundedness for them, and a weighted ( 1 , 1 ) inequality for weights w in A p satisfying that there exists c 1 such that w ( a i x ) c w ( x ) for a.e. x n , 1 i m . Moreover, we prove T f B M O c f for a wide family of functions f L ( n ) .

How to cite

top

Riveros, María Silvina, and Urciuolo, Marta. "Weighted inequalities for integral operators with some homogeneous kernels." Czechoslovak Mathematical Journal 55.2 (2005): 423-432. <http://eudml.org/doc/30955>.

@article{Riveros2005,
abstract = {In this paper we study integral operators of the form \[ Tf(x)=\int | x-a\_1y|^\{-\alpha \_1\}\dots | x-a\_my|^\{-\alpha \_m\}f(y)\mathrm \{d\}y, \]$\alpha _1+\dots +\alpha _m=n$. We obtain the $L^p(w)$ boundedness for them, and a weighted $(1,1)$ inequality for weights $w$ in $A_p$ satisfying that there exists $c\ge 1$ such that $w( a_ix) \le cw( x)$ for a.e. $x\in \mathbb \{R\}^n$, $1\le i\le m$. Moreover, we prove $\Vert Tf\Vert _\{\{\mathrm \{B\}MO\}\}\le c\Vert f\Vert _\infty $ for a wide family of functions $f\in L^\infty ( \mathbb \{R\}^n)$.},
author = {Riveros, María Silvina, Urciuolo, Marta},
journal = {Czechoslovak Mathematical Journal},
keywords = {weights; integral operators; weights; integral operators; -boundedness},
language = {eng},
number = {2},
pages = {423-432},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weighted inequalities for integral operators with some homogeneous kernels},
url = {http://eudml.org/doc/30955},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Riveros, María Silvina
AU - Urciuolo, Marta
TI - Weighted inequalities for integral operators with some homogeneous kernels
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 2
SP - 423
EP - 432
AB - In this paper we study integral operators of the form \[ Tf(x)=\int | x-a_1y|^{-\alpha _1}\dots | x-a_my|^{-\alpha _m}f(y)\mathrm {d}y, \]$\alpha _1+\dots +\alpha _m=n$. We obtain the $L^p(w)$ boundedness for them, and a weighted $(1,1)$ inequality for weights $w$ in $A_p$ satisfying that there exists $c\ge 1$ such that $w( a_ix) \le cw( x)$ for a.e. $x\in \mathbb {R}^n$, $1\le i\le m$. Moreover, we prove $\Vert Tf\Vert _{{\mathrm {B}MO}}\le c\Vert f\Vert _\infty $ for a wide family of functions $f\in L^\infty ( \mathbb {R}^n)$.
LA - eng
KW - weights; integral operators; weights; integral operators; -boundedness
UR - http://eudml.org/doc/30955
ER -

References

top
  1. 10.4064/sm-51-3-241-250, Studia Math. 51 (1974), 241–250. (1974) MR0358205DOI10.4064/sm-51-3-241-250
  2. Análisis de Fourier, Ediciones de la Universidad Autónoma de Madrid, Editorial Siglo  XXI, 1990. (1990) 
  3. About the L p   boundedness of some integral operators, Revista de la UMA 38 (1993), 192–195. (1993) MR1276023
  4. 10.1023/A:1026437621978, Acta Math. Hungar. 82 (1999), 99–105. (1999) MR1658586DOI10.1023/A:1026437621978
  5. 10.1002/cpa.3160140317, Comm. Pure Appl. Math. 14 (1961), 415–426. (1961) MR0131498DOI10.1002/cpa.3160140317
  6. 10.1090/S0002-9947-1972-0293384-6, Trans. Amer. Math. Soc. 165 (1972), 207–226. (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
  7. Two parameter maximal functions in the Heisenberg group, Math.  Z. 199 (1988), 565–575. (1988) MR0968322
  8. 10.4064/sm156-3-3, Studia Math. 156 (2003), 243–260. (2003) MR1978442DOI10.4064/sm156-3-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.