Remarks on spectral radius and Laplacian eigenvalues of a graph

Bo Zhou; Han Hyuk Cho

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 3, page 781-790
  • ISSN: 0011-4642

Abstract

top
Let G be a graph with n vertices, m edges and a vertex degree sequence ( d 1 , d 2 , , d n ) , where d 1 d 2 d n . The spectral radius and the largest Laplacian eigenvalue are denoted by ρ ( G ) and μ ( G ) , respectively. We determine the graphs with ρ ( G ) = d n - 1 2 + 2 m - n d n + ( d n + 1 ) 2 4 and the graphs with d n 1 and μ ( G ) = d n + 1 2 + i = 1 n d i ( d i - d n ) + d n - 1 2 2 . We also present some sharp lower bounds for the Laplacian eigenvalues of a connected graph.

How to cite

top

Zhou, Bo, and Cho, Han Hyuk. "Remarks on spectral radius and Laplacian eigenvalues of a graph." Czechoslovak Mathematical Journal 55.3 (2005): 781-790. <http://eudml.org/doc/30987>.

@article{Zhou2005,
abstract = {Let $G$ be a graph with $n$ vertices, $m$ edges and a vertex degree sequence $(d_1, d_2, \dots , d_n)$, where $d_1 \ge d_2 \ge \dots \ge d_n$. The spectral radius and the largest Laplacian eigenvalue are denoted by $\rho (G)$ and $\mu (G)$, respectively. We determine the graphs with \[ \rho (G) = \frac\{d\_n - 1\}\{2\} + \sqrt\{2m - nd\_n + \frac\{(d\_n +1)^2\}\{4\}\} \] and the graphs with $d_n\ge 1$ and \[ \mu (G) = d\_n + \frac\{1\}\{2\} + \sqrt\{\sum \_\{i=1\}^n d\_i (d\_i-d\_n) + \Bigl (d\_n - \frac\{1\}\{2\} \Bigr )^2\}. \] We also present some sharp lower bounds for the Laplacian eigenvalues of a connected graph.},
author = {Zhou, Bo, Cho, Han Hyuk},
journal = {Czechoslovak Mathematical Journal},
keywords = {spectral radius; Laplacian eigenvalue; strongly regular graph; spectral radius; Laplacian eigenvalue; strongly regular graph},
language = {eng},
number = {3},
pages = {781-790},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Remarks on spectral radius and Laplacian eigenvalues of a graph},
url = {http://eudml.org/doc/30987},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Zhou, Bo
AU - Cho, Han Hyuk
TI - Remarks on spectral radius and Laplacian eigenvalues of a graph
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 3
SP - 781
EP - 790
AB - Let $G$ be a graph with $n$ vertices, $m$ edges and a vertex degree sequence $(d_1, d_2, \dots , d_n)$, where $d_1 \ge d_2 \ge \dots \ge d_n$. The spectral radius and the largest Laplacian eigenvalue are denoted by $\rho (G)$ and $\mu (G)$, respectively. We determine the graphs with \[ \rho (G) = \frac{d_n - 1}{2} + \sqrt{2m - nd_n + \frac{(d_n +1)^2}{4}} \] and the graphs with $d_n\ge 1$ and \[ \mu (G) = d_n + \frac{1}{2} + \sqrt{\sum _{i=1}^n d_i (d_i-d_n) + \Bigl (d_n - \frac{1}{2} \Bigr )^2}. \] We also present some sharp lower bounds for the Laplacian eigenvalues of a connected graph.
LA - eng
KW - spectral radius; Laplacian eigenvalue; strongly regular graph; spectral radius; Laplacian eigenvalue; strongly regular graph
UR - http://eudml.org/doc/30987
ER -

References

top
  1. From the Editor in Chief, Linear Algebra Appl. 360 (2003), 279–283. (2003) MR1728495
  2. Spectra of Graphs, DVW, Berlin, 1980. (1980) MR0572262
  3. Algebraic conectivity of graphs, Czechoslovak Math.  J. 23 (1973), 298–305. (1973) MR0318007
  4. 10.1137/S0895480191222653, SIAM J.  Discrete Math. 7 (1994), 221–229. (1994) MR1271994DOI10.1137/S0895480191222653
  5. 10.1016/0012-365X(93)90007-G, Discrete Math. 123 (1993), 65–74. (1993) Zbl0788.05067MR1256082DOI10.1016/0012-365X(93)90007-G
  6. 10.1006/jctb.2000.1997, J.  Combinatorial Theory Ser.  B 81 (2001), 177–183. (2001) MR1814902DOI10.1006/jctb.2000.1997
  7. Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197-198 (1994), 143–176. (1994) Zbl0802.05053MR1275613
  8. 10.1016/0024-3795(87)90172-8, Linear Algebra Appl. 87 (1987), 267–269. (1987) Zbl0617.05045MR0878683DOI10.1016/0024-3795(87)90172-8
  9. A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph, Linear Algebra Appl. 347 (2002), 123–129. (2002) MR1899886
  10. 10.1017/S0963548301004928, Combin. Probab. Comput. 11 (2002), 179–189. (2002) Zbl1005.05029MR1888908DOI10.1017/S0963548301004928
  11. 10.1007/BF02669571, Acta Mathematicae Applicatae Sinica 17 (2001), 183–190. (2001) MR1877099DOI10.1007/BF02669571

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.