Remarks on spectral radius and Laplacian eigenvalues of a graph
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 3, page 781-790
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhou, Bo, and Cho, Han Hyuk. "Remarks on spectral radius and Laplacian eigenvalues of a graph." Czechoslovak Mathematical Journal 55.3 (2005): 781-790. <http://eudml.org/doc/30987>.
@article{Zhou2005,
abstract = {Let $G$ be a graph with $n$ vertices, $m$ edges and a vertex degree sequence $(d_1, d_2, \dots , d_n)$, where $d_1 \ge d_2 \ge \dots \ge d_n$. The spectral radius and the largest Laplacian eigenvalue are denoted by $\rho (G)$ and $\mu (G)$, respectively. We determine the graphs with \[ \rho (G) = \frac\{d\_n - 1\}\{2\} + \sqrt\{2m - nd\_n + \frac\{(d\_n +1)^2\}\{4\}\} \]
and the graphs with $d_n\ge 1$ and \[ \mu (G) = d\_n + \frac\{1\}\{2\} + \sqrt\{\sum \_\{i=1\}^n d\_i (d\_i-d\_n) + \Bigl (d\_n - \frac\{1\}\{2\} \Bigr )^2\}. \]
We also present some sharp lower bounds for the Laplacian eigenvalues of a connected graph.},
author = {Zhou, Bo, Cho, Han Hyuk},
journal = {Czechoslovak Mathematical Journal},
keywords = {spectral radius; Laplacian eigenvalue; strongly regular graph; spectral radius; Laplacian eigenvalue; strongly regular graph},
language = {eng},
number = {3},
pages = {781-790},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Remarks on spectral radius and Laplacian eigenvalues of a graph},
url = {http://eudml.org/doc/30987},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Zhou, Bo
AU - Cho, Han Hyuk
TI - Remarks on spectral radius and Laplacian eigenvalues of a graph
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 3
SP - 781
EP - 790
AB - Let $G$ be a graph with $n$ vertices, $m$ edges and a vertex degree sequence $(d_1, d_2, \dots , d_n)$, where $d_1 \ge d_2 \ge \dots \ge d_n$. The spectral radius and the largest Laplacian eigenvalue are denoted by $\rho (G)$ and $\mu (G)$, respectively. We determine the graphs with \[ \rho (G) = \frac{d_n - 1}{2} + \sqrt{2m - nd_n + \frac{(d_n +1)^2}{4}} \]
and the graphs with $d_n\ge 1$ and \[ \mu (G) = d_n + \frac{1}{2} + \sqrt{\sum _{i=1}^n d_i (d_i-d_n) + \Bigl (d_n - \frac{1}{2} \Bigr )^2}. \]
We also present some sharp lower bounds for the Laplacian eigenvalues of a connected graph.
LA - eng
KW - spectral radius; Laplacian eigenvalue; strongly regular graph; spectral radius; Laplacian eigenvalue; strongly regular graph
UR - http://eudml.org/doc/30987
ER -
References
top- From the Editor in Chief, Linear Algebra Appl. 360 (2003), 279–283. (2003) MR1728495
- Spectra of Graphs, DVW, Berlin, 1980. (1980) MR0572262
- Algebraic conectivity of graphs, Czechoslovak Math. J. 23 (1973), 298–305. (1973) MR0318007
- 10.1137/S0895480191222653, SIAM J. Discrete Math. 7 (1994), 221–229. (1994) MR1271994DOI10.1137/S0895480191222653
- 10.1016/0012-365X(93)90007-G, Discrete Math. 123 (1993), 65–74. (1993) Zbl0788.05067MR1256082DOI10.1016/0012-365X(93)90007-G
- 10.1006/jctb.2000.1997, J. Combinatorial Theory Ser. B 81 (2001), 177–183. (2001) MR1814902DOI10.1006/jctb.2000.1997
- Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197-198 (1994), 143–176. (1994) Zbl0802.05053MR1275613
- 10.1016/0024-3795(87)90172-8, Linear Algebra Appl. 87 (1987), 267–269. (1987) Zbl0617.05045MR0878683DOI10.1016/0024-3795(87)90172-8
- A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph, Linear Algebra Appl. 347 (2002), 123–129. (2002) MR1899886
- 10.1017/S0963548301004928, Combin. Probab. Comput. 11 (2002), 179–189. (2002) Zbl1005.05029MR1888908DOI10.1017/S0963548301004928
- 10.1007/BF02669571, Acta Mathematicae Applicatae Sinica 17 (2001), 183–190. (2001) MR1877099DOI10.1007/BF02669571
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.