Some oscillation theorems for second order differential equations
Chung-Fen Lee; Cheh Chih Yeh; Chuen-Yu Gau
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 4, page 845-861
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLee, Chung-Fen, Yeh, Cheh Chih, and Gau, Chuen-Yu. "Some oscillation theorems for second order differential equations." Czechoslovak Mathematical Journal 55.4 (2005): 845-861. <http://eudml.org/doc/30993>.
@article{Lee2005,
abstract = {In this paper we establish some oscillation or nonoscillation criteria for the second order half-linear differential equation \[ (r(t)\Phi (u^\{\prime \}(t)))^\{\prime \}+c(t)\Phi (u(t))=0, \]
where (i) $r,c\in C([t_\{0\}, \infty )$, $\mathbb \{R\}:=(-\infty , \infty ))$ and $r(t)>0$ on $[t_\{0\},\infty )$ for some $t_\{0\}\ge 0$; (ii) $\Phi (u)=|u|^\{p-2\}u$ for some fixed number $p> 1$. We also generalize some results of Hille-Wintner, Leighton and Willet.},
author = {Lee, Chung-Fen, Yeh, Cheh Chih, Gau, Chuen-Yu},
journal = {Czechoslovak Mathematical Journal},
keywords = {oscillatory; nonoscillatory; Riccati differential equation; Sturm Comparison Theorem; oscillatory; nonoscillatory; Riccati differential equation; Sturm Comparison Theorem},
language = {eng},
number = {4},
pages = {845-861},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some oscillation theorems for second order differential equations},
url = {http://eudml.org/doc/30993},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Lee, Chung-Fen
AU - Yeh, Cheh Chih
AU - Gau, Chuen-Yu
TI - Some oscillation theorems for second order differential equations
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 845
EP - 861
AB - In this paper we establish some oscillation or nonoscillation criteria for the second order half-linear differential equation \[ (r(t)\Phi (u^{\prime }(t)))^{\prime }+c(t)\Phi (u(t))=0, \]
where (i) $r,c\in C([t_{0}, \infty )$, $\mathbb {R}:=(-\infty , \infty ))$ and $r(t)>0$ on $[t_{0},\infty )$ for some $t_{0}\ge 0$; (ii) $\Phi (u)=|u|^{p-2}u$ for some fixed number $p> 1$. We also generalize some results of Hille-Wintner, Leighton and Willet.
LA - eng
KW - oscillatory; nonoscillatory; Riccati differential equation; Sturm Comparison Theorem; oscillatory; nonoscillatory; Riccati differential equation; Sturm Comparison Theorem
UR - http://eudml.org/doc/30993
ER -
References
top- A simple proof of a well-known oscillation theorem, Proc. Amer. Math. Soc. 19 (1968), 507. (1968) Zbl0155.12802MR0223644
- A half-linear second order differential equation, Colloquia Math. Soc. J. Bolyai 30: Qualitivative Theorem of Differential Equations, Szeged, 1979, pp. 153–180. (1979) MR0680591
- 10.1007/BF01300536, Monatsh. Math. 73 (1969), 207–212. (1969) MR0244561DOI10.1007/BF01300536
- 10.1112/S0025579300012432, Mathematika 31 (1984), 214–226. (1984) Zbl0574.34015MR0804196DOI10.1112/S0025579300012432
- 10.1090/S0002-9947-1948-0027925-7, Trans. Amer. Math. Soc. 64 (1948), 234–252. (1948) Zbl0031.35402MR0027925DOI10.1090/S0002-9947-1948-0027925-7
- 10.1007/BF01444165, Math. Ann. 42 (1893), 409–435. (1893) MR1510784DOI10.1007/BF01444165
- 10.1016/0022-0396(82)90052-3, J. Diff. Equations 45 (1982), 16–33. (1982) MR0662484DOI10.1016/0022-0396(82)90052-3
- 10.1215/S0012-7094-50-01707-8, Duke J. Math. 17 (1950), 57–62. (1950) Zbl0036.06101MR0032065DOI10.1215/S0012-7094-50-01707-8
- 10.1090/S0002-9939-1962-0140759-0, Proc. Amer. Math. Soc. 13 (1962), 603–610. (1962) Zbl0118.08202MR0140759DOI10.1090/S0002-9939-1962-0140759-0
- Sturmian comparison theorem for half-linear second order differential equations, Proc. Roy. Soc. Edin. 125A (1995), 1193–1204. (1995) MR1362999
- 10.1002/mana.19961820113, Math. Nachr. 182 (1996), 295–315. (1996) MR1419898DOI10.1002/mana.19961820113
- 10.1016/0022-247X(76)90120-7, J. Math. Anal. Appl. 53 (1976), 418–425. (1976) Zbl0327.34027MR0402184DOI10.1016/0022-247X(76)90120-7
- 10.2140/pjm.1955.5.125, Pacific J. Math. 5 (1955), 125–145. (1955) MR0068690DOI10.2140/pjm.1955.5.125
- Sur les équations différentielles linéaires du second order, J. Math. Pures Appl. 1 (1836), 106–186. (1836)
- Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New York-London, 1968. (1968) Zbl0191.09904MR0463570
- 10.1215/S0012-7094-52-01951-0, Duke Math. J. 19 (1952), 493–497. (1952) MR0051994DOI10.1215/S0012-7094-52-01951-0
- 10.4064/ap-21-2-175-194, Ann. Polon. Math. 21 (1969), 175–194. (1969) Zbl0174.13701MR0249723DOI10.4064/ap-21-2-175-194
- 10.7146/math.scand.a-10502, Math. Scand. 5 (1957), 255–260. (1957) Zbl0080.29801MR0096867DOI10.7146/math.scand.a-10502
- 10.1016/0001-8708(69)90011-5, Adv. Math. 3 (1969), 594–623. (1969) Zbl0188.40101MR0280800DOI10.1016/0001-8708(69)90011-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.