Some oscillation theorems for second order differential equations

Chung-Fen Lee; Cheh Chih Yeh; Chuen-Yu Gau

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 4, page 845-861
  • ISSN: 0011-4642

Abstract

top
In this paper we establish some oscillation or nonoscillation criteria for the second order half-linear differential equation ( r ( t ) Φ ( u ' ( t ) ) ) ' + c ( t ) Φ ( u ( t ) ) = 0 , where (i) r , c C ( [ t 0 , ) , : = ( - , ) ) and r ( t ) > 0 on [ t 0 , ) for some t 0 0 ; (ii) Φ ( u ) = | u | p - 2 u for some fixed number p > 1 . We also generalize some results of Hille-Wintner, Leighton and Willet.

How to cite

top

Lee, Chung-Fen, Yeh, Cheh Chih, and Gau, Chuen-Yu. "Some oscillation theorems for second order differential equations." Czechoslovak Mathematical Journal 55.4 (2005): 845-861. <http://eudml.org/doc/30993>.

@article{Lee2005,
abstract = {In this paper we establish some oscillation or nonoscillation criteria for the second order half-linear differential equation \[ (r(t)\Phi (u^\{\prime \}(t)))^\{\prime \}+c(t)\Phi (u(t))=0, \] where (i) $r,c\in C([t_\{0\}, \infty )$, $\mathbb \{R\}:=(-\infty , \infty ))$ and $r(t)>0$ on $[t_\{0\},\infty )$ for some $t_\{0\}\ge 0$; (ii) $\Phi (u)=|u|^\{p-2\}u$ for some fixed number $p> 1$. We also generalize some results of Hille-Wintner, Leighton and Willet.},
author = {Lee, Chung-Fen, Yeh, Cheh Chih, Gau, Chuen-Yu},
journal = {Czechoslovak Mathematical Journal},
keywords = {oscillatory; nonoscillatory; Riccati differential equation; Sturm Comparison Theorem; oscillatory; nonoscillatory; Riccati differential equation; Sturm Comparison Theorem},
language = {eng},
number = {4},
pages = {845-861},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some oscillation theorems for second order differential equations},
url = {http://eudml.org/doc/30993},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Lee, Chung-Fen
AU - Yeh, Cheh Chih
AU - Gau, Chuen-Yu
TI - Some oscillation theorems for second order differential equations
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 845
EP - 861
AB - In this paper we establish some oscillation or nonoscillation criteria for the second order half-linear differential equation \[ (r(t)\Phi (u^{\prime }(t)))^{\prime }+c(t)\Phi (u(t))=0, \] where (i) $r,c\in C([t_{0}, \infty )$, $\mathbb {R}:=(-\infty , \infty ))$ and $r(t)>0$ on $[t_{0},\infty )$ for some $t_{0}\ge 0$; (ii) $\Phi (u)=|u|^{p-2}u$ for some fixed number $p> 1$. We also generalize some results of Hille-Wintner, Leighton and Willet.
LA - eng
KW - oscillatory; nonoscillatory; Riccati differential equation; Sturm Comparison Theorem; oscillatory; nonoscillatory; Riccati differential equation; Sturm Comparison Theorem
UR - http://eudml.org/doc/30993
ER -

References

top
  1. A simple proof of a well-known oscillation theorem, Proc. Amer. Math. Soc. 19 (1968), 507. (1968) Zbl0155.12802MR0223644
  2. A half-linear second order differential equation, Colloquia Math. Soc.  J. Bolyai 30: Qualitivative Theorem of Differential Equations, Szeged, 1979, pp. 153–180. (1979) MR0680591
  3. 10.1007/BF01300536, Monatsh. Math. 73 (1969), 207–212. (1969) MR0244561DOI10.1007/BF01300536
  4. 10.1112/S0025579300012432, Mathematika 31 (1984), 214–226. (1984) Zbl0574.34015MR0804196DOI10.1112/S0025579300012432
  5. 10.1090/S0002-9947-1948-0027925-7, Trans. Amer. Math. Soc. 64 (1948), 234–252. (1948) Zbl0031.35402MR0027925DOI10.1090/S0002-9947-1948-0027925-7
  6. 10.1007/BF01444165, Math. Ann. 42 (1893), 409–435. (1893) MR1510784DOI10.1007/BF01444165
  7. 10.1016/0022-0396(82)90052-3, J.  Diff. Equations 45 (1982), 16–33. (1982) MR0662484DOI10.1016/0022-0396(82)90052-3
  8. 10.1215/S0012-7094-50-01707-8, Duke J.  Math. 17 (1950), 57–62. (1950) Zbl0036.06101MR0032065DOI10.1215/S0012-7094-50-01707-8
  9. 10.1090/S0002-9939-1962-0140759-0, Proc. Amer. Math. Soc. 13 (1962), 603–610. (1962) Zbl0118.08202MR0140759DOI10.1090/S0002-9939-1962-0140759-0
  10. Sturmian comparison theorem for half-linear second order differential equations, Proc. Roy. Soc. Edin. 125A (1995), 1193–1204. (1995) MR1362999
  11. 10.1002/mana.19961820113, Math. Nachr. 182 (1996), 295–315. (1996) MR1419898DOI10.1002/mana.19961820113
  12. 10.1016/0022-247X(76)90120-7, J.  Math. Anal. Appl. 53 (1976), 418–425. (1976) Zbl0327.34027MR0402184DOI10.1016/0022-247X(76)90120-7
  13. 10.2140/pjm.1955.5.125, Pacific J.  Math. 5 (1955), 125–145. (1955) MR0068690DOI10.2140/pjm.1955.5.125
  14. Sur les équations différentielles linéaires du second order, J.  Math. Pures Appl. 1 (1836), 106–186. (1836) 
  15. Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New York-London, 1968. (1968) Zbl0191.09904MR0463570
  16. 10.1215/S0012-7094-52-01951-0, Duke Math.  J. 19 (1952), 493–497. (1952) MR0051994DOI10.1215/S0012-7094-52-01951-0
  17. 10.4064/ap-21-2-175-194, Ann. Polon. Math. 21 (1969), 175–194. (1969) Zbl0174.13701MR0249723DOI10.4064/ap-21-2-175-194
  18. 10.7146/math.scand.a-10502, Math. Scand. 5 (1957), 255–260. (1957) Zbl0080.29801MR0096867DOI10.7146/math.scand.a-10502
  19. 10.1016/0001-8708(69)90011-5, Adv. Math. 3 (1969), 594–623. (1969) Zbl0188.40101MR0280800DOI10.1016/0001-8708(69)90011-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.