Estimates of the remainder in Taylor’s theorem using the Henstock-Kurzweil integral
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 4, page 933-940
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTalvila, Erik. "Estimates of the remainder in Taylor’s theorem using the Henstock-Kurzweil integral." Czechoslovak Mathematical Journal 55.4 (2005): 933-940. <http://eudml.org/doc/31000>.
@article{Talvila2005,
abstract = {When a real-valued function of one variable is approximated by its $n$th degree Taylor polynomial, the remainder is estimated using the Alexiewicz and Lebesgue $p$-norms in cases where $f^\{(n)\}$ or $f^\{(n+1)\}$ are Henstock-Kurzweil integrable. When the only assumption is that $f^\{(n)\}~$ is Henstock-Kurzweil integrable then a modified form of the $n$th degree Taylor polynomial is used. When the only assumption is that $f^\{(n)\}\in C^0$ then the remainder is estimated by applying the Alexiewicz norm to Schwartz distributions of order 1.},
author = {Talvila, Erik},
journal = {Czechoslovak Mathematical Journal},
keywords = {Taylor’s theorem; Henstock-Kurzweil integral; Alexiewicz norm; Taylor theorem; Henstock-Kurzweil integral; Alexiewicz norm},
language = {eng},
number = {4},
pages = {933-940},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Estimates of the remainder in Taylor’s theorem using the Henstock-Kurzweil integral},
url = {http://eudml.org/doc/31000},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Talvila, Erik
TI - Estimates of the remainder in Taylor’s theorem using the Henstock-Kurzweil integral
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 933
EP - 940
AB - When a real-valued function of one variable is approximated by its $n$th degree Taylor polynomial, the remainder is estimated using the Alexiewicz and Lebesgue $p$-norms in cases where $f^{(n)}$ or $f^{(n+1)}$ are Henstock-Kurzweil integrable. When the only assumption is that $f^{(n)}~$ is Henstock-Kurzweil integrable then a modified form of the $n$th degree Taylor polynomial is used. When the only assumption is that $f^{(n)}\in C^0$ then the remainder is estimated by applying the Alexiewicz norm to Schwartz distributions of order 1.
LA - eng
KW - Taylor’s theorem; Henstock-Kurzweil integral; Alexiewicz norm; Taylor theorem; Henstock-Kurzweil integral; Alexiewicz norm
UR - http://eudml.org/doc/31000
ER -
References
top- 10.1006/jmaa.2001.7622, J. Math. Anal. Appl. 263 (2001), 246–263. (2001) MR1865279DOI10.1006/jmaa.2001.7622
- The Theory of the Denjoy Integral and Some Applications, World Scientific, Singapore, 1989. (1989) MR1036270
- 10.2307/2324693, Amer. Math. Monthly 97 (1990), 233–235. (1990) Zbl0737.41031MR1048439DOI10.2307/2324693
- Theory of the Integral, Monografie Matematyczne, Warsaw, 1937. (1937) Zbl0017.30004
- Introduction to Gauge Integrals, World Scientific, Singapore, 2001. (2001) Zbl0982.26006MR1845270
- 10.2307/2324092, Amer. Math. Monthly 96 (1989), 346–350. (1989) Zbl0682.26001MR0992083DOI10.2307/2324092
- Some applications of Kurzweil-Henstock integration, Math. Bohem. 118 (1993), 425–441. (1993) MR1251885
- The Fundamental Theorems of the Differential Calculus, Cambridge University Press, Cambridge, 1910. (1910)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.