Two convergence theorems for Henstock-Kurzweil integrals and their applications to multiple trigonometric series

Tuo-Yeong Lee

Czechoslovak Mathematical Journal (2013)

  • Volume: 63, Issue: 1, page 1-38
  • ISSN: 0011-4642

Abstract

top
We establish two new norm convergence theorems for Henstock-Kurzweil integrals. In particular, we provide a unified approach for extending several results of R. P. Boas and P. Heywood from one-dimensional to multidimensional trigonometric series.

How to cite

top

Lee, Tuo-Yeong. "Two convergence theorems for Henstock-Kurzweil integrals and their applications to multiple trigonometric series." Czechoslovak Mathematical Journal 63.1 (2013): 1-38. <http://eudml.org/doc/252543>.

@article{Lee2013,
abstract = {We establish two new norm convergence theorems for Henstock-Kurzweil integrals. In particular, we provide a unified approach for extending several results of R. P. Boas and P. Heywood from one-dimensional to multidimensional trigonometric series.},
author = {Lee, Tuo-Yeong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Henstock-Kurzweil integral; regularly convergent multiple series; multiple Henstock-Kurzweil integral; regularly convergent multiple series; multiple trigonometric series},
language = {eng},
number = {1},
pages = {1-38},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two convergence theorems for Henstock-Kurzweil integrals and their applications to multiple trigonometric series},
url = {http://eudml.org/doc/252543},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Lee, Tuo-Yeong
TI - Two convergence theorems for Henstock-Kurzweil integrals and their applications to multiple trigonometric series
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 1
SP - 1
EP - 38
AB - We establish two new norm convergence theorems for Henstock-Kurzweil integrals. In particular, we provide a unified approach for extending several results of R. P. Boas and P. Heywood from one-dimensional to multidimensional trigonometric series.
LA - eng
KW - Henstock-Kurzweil integral; regularly convergent multiple series; multiple Henstock-Kurzweil integral; regularly convergent multiple series; multiple trigonometric series
UR - http://eudml.org/doc/252543
ER -

References

top
  1. Aubertin, B., Fournier, J. J. F., Integrability of Multiple Series, Fourier Analysis: Analytic and Geometric Aspects. Proc. 6th Int. Workshop on Analysis and Its Applications, Univ. of Maine, 1992. Lecture Notes in Pure and Appl. Math., Vol. 157 W. O. Bray et al. Marcel Dekker New York (1994), 47-75. (1994) Zbl0807.42005MR1277818
  2. Boas, R. P., 10.1215/S0012-7094-51-01872-8, Duke Math. J. 18 (1951), 787-793. (1951) Zbl0045.03302MR0045230DOI10.1215/S0012-7094-51-01872-8
  3. Boas, R. P., Integrability Theorems for Trigonometric Transforms, Springer Berlin-New York (1967). (1967) Zbl0145.06804MR0219973
  4. Bongiorno, B., The Henstock-Kurzweil integral. Handbook of Measure Theory, Vol. I, II, North-Holland Amsterdam (2002), 587-615. (2002) MR1954623
  5. Chew, T.-S., Van-Brunt, B., Wake, G. C., First-order partial differential equations and Henstock-Kurzweil integrals, Differ. Integral Equ. 10 (1997), 947-960. (1997) Zbl0890.35025MR1741760
  6. Faure, C.-A., A descriptive definition of some multidimensional gauge integrals, Czech. Math. J. 45 (1995), 549-562. (1995) Zbl0852.26010MR1344520
  7. Faure, C.-A., Mawhin, J., 10.1006/jmaa.1996.5172, J. Math. Anal. Appl. 205 (1997), 65-77. (1997) Zbl0879.26047MR1426980DOI10.1006/jmaa.1996.5172
  8. Hardy, G. H., Littlewood, J. E., 10.1007/BF01181064, Math. Zs. 19 (1923), 67-96. (1923) DOI10.1007/BF01181064
  9. Henstock, R., 10.1112/plms/s3-11.1.402, Proc. Lond. Math. Soc., III. Ser. 11 (1961), 402-418. (1961) Zbl0099.27402MR0132147DOI10.1112/plms/s3-11.1.402
  10. Henstock, R., Muldowney, P., Skvortsov, V. A., 10.1112/S0024609306018819, Bull. Lond. Math. Soc. 38 (2006), 795-803. (2006) Zbl1117.28010MR2268364DOI10.1112/S0024609306018819
  11. Heywood, P., 10.1093/qmath/13.1.172, Q. J. Math., Oxford, II. Ser. 13 (1962), 172-180. (1962) Zbl0107.05203MR0142970DOI10.1093/qmath/13.1.172
  12. Karták, K., K theorii vícerozměrného integrálu, Čas. Mat. 80 (1955), 400-414 Czech. (1955) 
  13. Kurzweil, J., Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. J. 7 (1957), 418-449. (1957) Zbl0090.30002MR0111875
  14. Lee, P. Y., Výborný, R., The Integral: An Easy Approach After Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14, Cambridge University Press Cambridge (2000). (2000) MR1756319
  15. Lee, T.-Y., 10.1112/S0024611503014163, Proc. Lond. Math. Soc., III. Ser 87 (2003), 677-700. (2003) Zbl1047.26006MR2005879DOI10.1112/S0024611503014163
  16. Lee, T.-Y., 10.1016/j.jmaa.2004.05.033, J. Math. Anal. Appl. 298 (2004), 677-692. (2004) Zbl1065.26013MR2086983DOI10.1016/j.jmaa.2004.05.033
  17. Lee, T.-Y., 10.1017/S030500410500839X, Math. Proc. Camb. Philos. Soc. 138 (2005), 487-492. (2005) Zbl1078.28004MR2138575DOI10.1017/S030500410500839X
  18. Lee, T.-Y., 10.1016/j.jmaa.2007.08.010, J. Math. Anal. Appl. 340 (2008), 53-63. (2008) MR2376137DOI10.1016/j.jmaa.2007.08.010
  19. Lee, T.-Y., Some convergence theorems for Lebesgue integrals, Analysis, München 28 (2008), 263-268. (2008) MR2401157
  20. Lee, T.-Y., 10.1007/s10587-008-0081-0, Czech. Math. J. 58 (2008), 1221-1231. (2008) MR2471178DOI10.1007/s10587-008-0081-0
  21. Lee, T.-Y., A multidimensional integration by parts formula for the Henstock-Kurzweil integral, Math. Bohem. 133 (2008), 63-74. (2008) MR2400151
  22. Lee, T.-Y., 10.1007/s10587-009-0070-y, Czech. Math. J. 59 (2009), 1005-1017. (2009) MR2563573DOI10.1007/s10587-009-0070-y
  23. Lee, T.-Y., 10.1007/s10476-010-0302-2, Anal. Math. 36 (2010), 219-223. (2010) MR2678674DOI10.1007/s10476-010-0302-2
  24. Lee, T.-Y., Some integrability theorems for multiple trigonometric series, Math. Bohem. 136 (2011), 269-286. (2011) MR2893976
  25. Mikusiński, P., Ostaszewski, K., 10.1007/BFb0083105, New Integrals. Lect. Notes Math. Vol. 1419 P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney, W. F. Pfeffer Springer Berlin-Heideberg-New York (1990), 136-149. (1990) MR1051926DOI10.1007/BFb0083105
  26. Móricz, F., 10.1007/BF01994074, Acta Math. Hung. 41 (1983), 161-168. (1983) MR0704536DOI10.1007/BF01994074
  27. Móricz, F., 10.1090/S0002-9939-1990-1021902-5, Proc. Am. Math. Soc. 110 (1990), 355-364. (1990) MR1021902DOI10.1090/S0002-9939-1990-1021902-5
  28. Móricz, F., 10.1016/0022-247X(91)90050-A, J. Math. Anal. Appl. 154 (1991), 452-465. (1991) MR1088644DOI10.1016/0022-247X(91)90050-A
  29. Móricz, F., 10.1016/0022-247X(91)90051-Z, J. Math. Anal. Appl. 154 (1991), 466-483. (1991) MR1088644DOI10.1016/0022-247X(91)90051-Z
  30. Móricz, F., 10.1016/0022-247X(92)90049-J, J. Math. Anal. Appl. 165 (1992), 419-437. (1992) MR1155730DOI10.1016/0022-247X(92)90049-J
  31. Ostaszewski, K., Henstock Integration in the Plane, Mem. Am. Math. Soc. Vol. 63 (1986). (1986) MR0856159
  32. Saks, S., Theory of the Integral. Second revised edition, G. E. Stechert & Co. New York (1937). (1937) 
  33. Talvila, E., 10.1215/ijm/1258138475, Ill. J. Math. 46 (2002), 1207-1226. (2002) Zbl1037.42007MR1988259DOI10.1215/ijm/1258138475
  34. Talvila, E., 10.4153/CMB-2005-012-8, Can. Math. Bull. 48 (2005), 133-146. (2005) MR2118770DOI10.4153/CMB-2005-012-8
  35. Talvila, E., 10.1007/s10587-005-0077-y, Czech. Math. J. 55 (2005), 933-940. (2005) MR2184374DOI10.1007/s10587-005-0077-y
  36. Young, W. H., On multiple Fourier series, Lond. M. S. Proc. 11 (1912), 133-184. (1912) MR1577218
  37. Zygmund, A., Trigonometric Series. Volumes I, II and combined. Third edition, Cambridge University Press Cambridge (2002). (2002) MR1963498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.