Two convergence theorems for Henstock-Kurzweil integrals and their applications to multiple trigonometric series
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 1, page 1-38
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLee, Tuo-Yeong. "Two convergence theorems for Henstock-Kurzweil integrals and their applications to multiple trigonometric series." Czechoslovak Mathematical Journal 63.1 (2013): 1-38. <http://eudml.org/doc/252543>.
@article{Lee2013,
abstract = {We establish two new norm convergence theorems for Henstock-Kurzweil integrals. In particular, we provide a unified approach for extending several results of R. P. Boas and P. Heywood from one-dimensional to multidimensional trigonometric series.},
author = {Lee, Tuo-Yeong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Henstock-Kurzweil integral; regularly convergent multiple series; multiple Henstock-Kurzweil integral; regularly convergent multiple series; multiple trigonometric series},
language = {eng},
number = {1},
pages = {1-38},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two convergence theorems for Henstock-Kurzweil integrals and their applications to multiple trigonometric series},
url = {http://eudml.org/doc/252543},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Lee, Tuo-Yeong
TI - Two convergence theorems for Henstock-Kurzweil integrals and their applications to multiple trigonometric series
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 1
SP - 1
EP - 38
AB - We establish two new norm convergence theorems for Henstock-Kurzweil integrals. In particular, we provide a unified approach for extending several results of R. P. Boas and P. Heywood from one-dimensional to multidimensional trigonometric series.
LA - eng
KW - Henstock-Kurzweil integral; regularly convergent multiple series; multiple Henstock-Kurzweil integral; regularly convergent multiple series; multiple trigonometric series
UR - http://eudml.org/doc/252543
ER -
References
top- Aubertin, B., Fournier, J. J. F., Integrability of Multiple Series, Fourier Analysis: Analytic and Geometric Aspects. Proc. 6th Int. Workshop on Analysis and Its Applications, Univ. of Maine, 1992. Lecture Notes in Pure and Appl. Math., Vol. 157 W. O. Bray et al. Marcel Dekker New York (1994), 47-75. (1994) Zbl0807.42005MR1277818
- Boas, R. P., 10.1215/S0012-7094-51-01872-8, Duke Math. J. 18 (1951), 787-793. (1951) Zbl0045.03302MR0045230DOI10.1215/S0012-7094-51-01872-8
- Boas, R. P., Integrability Theorems for Trigonometric Transforms, Springer Berlin-New York (1967). (1967) Zbl0145.06804MR0219973
- Bongiorno, B., The Henstock-Kurzweil integral. Handbook of Measure Theory, Vol. I, II, North-Holland Amsterdam (2002), 587-615. (2002) MR1954623
- Chew, T.-S., Van-Brunt, B., Wake, G. C., First-order partial differential equations and Henstock-Kurzweil integrals, Differ. Integral Equ. 10 (1997), 947-960. (1997) Zbl0890.35025MR1741760
- Faure, C.-A., A descriptive definition of some multidimensional gauge integrals, Czech. Math. J. 45 (1995), 549-562. (1995) Zbl0852.26010MR1344520
- Faure, C.-A., Mawhin, J., 10.1006/jmaa.1996.5172, J. Math. Anal. Appl. 205 (1997), 65-77. (1997) Zbl0879.26047MR1426980DOI10.1006/jmaa.1996.5172
- Hardy, G. H., Littlewood, J. E., 10.1007/BF01181064, Math. Zs. 19 (1923), 67-96. (1923) DOI10.1007/BF01181064
- Henstock, R., 10.1112/plms/s3-11.1.402, Proc. Lond. Math. Soc., III. Ser. 11 (1961), 402-418. (1961) Zbl0099.27402MR0132147DOI10.1112/plms/s3-11.1.402
- Henstock, R., Muldowney, P., Skvortsov, V. A., 10.1112/S0024609306018819, Bull. Lond. Math. Soc. 38 (2006), 795-803. (2006) Zbl1117.28010MR2268364DOI10.1112/S0024609306018819
- Heywood, P., 10.1093/qmath/13.1.172, Q. J. Math., Oxford, II. Ser. 13 (1962), 172-180. (1962) Zbl0107.05203MR0142970DOI10.1093/qmath/13.1.172
- Karták, K., K theorii vícerozměrného integrálu, Čas. Mat. 80 (1955), 400-414 Czech. (1955)
- Kurzweil, J., Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. J. 7 (1957), 418-449. (1957) Zbl0090.30002MR0111875
- Lee, P. Y., Výborný, R., The Integral: An Easy Approach After Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14, Cambridge University Press Cambridge (2000). (2000) MR1756319
- Lee, T.-Y., 10.1112/S0024611503014163, Proc. Lond. Math. Soc., III. Ser 87 (2003), 677-700. (2003) Zbl1047.26006MR2005879DOI10.1112/S0024611503014163
- Lee, T.-Y., 10.1016/j.jmaa.2004.05.033, J. Math. Anal. Appl. 298 (2004), 677-692. (2004) Zbl1065.26013MR2086983DOI10.1016/j.jmaa.2004.05.033
- Lee, T.-Y., 10.1017/S030500410500839X, Math. Proc. Camb. Philos. Soc. 138 (2005), 487-492. (2005) Zbl1078.28004MR2138575DOI10.1017/S030500410500839X
- Lee, T.-Y., 10.1016/j.jmaa.2007.08.010, J. Math. Anal. Appl. 340 (2008), 53-63. (2008) MR2376137DOI10.1016/j.jmaa.2007.08.010
- Lee, T.-Y., Some convergence theorems for Lebesgue integrals, Analysis, München 28 (2008), 263-268. (2008) MR2401157
- Lee, T.-Y., 10.1007/s10587-008-0081-0, Czech. Math. J. 58 (2008), 1221-1231. (2008) MR2471178DOI10.1007/s10587-008-0081-0
- Lee, T.-Y., A multidimensional integration by parts formula for the Henstock-Kurzweil integral, Math. Bohem. 133 (2008), 63-74. (2008) MR2400151
- Lee, T.-Y., 10.1007/s10587-009-0070-y, Czech. Math. J. 59 (2009), 1005-1017. (2009) MR2563573DOI10.1007/s10587-009-0070-y
- Lee, T.-Y., 10.1007/s10476-010-0302-2, Anal. Math. 36 (2010), 219-223. (2010) MR2678674DOI10.1007/s10476-010-0302-2
- Lee, T.-Y., Some integrability theorems for multiple trigonometric series, Math. Bohem. 136 (2011), 269-286. (2011) MR2893976
- Mikusiński, P., Ostaszewski, K., 10.1007/BFb0083105, New Integrals. Lect. Notes Math. Vol. 1419 P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney, W. F. Pfeffer Springer Berlin-Heideberg-New York (1990), 136-149. (1990) MR1051926DOI10.1007/BFb0083105
- Móricz, F., 10.1007/BF01994074, Acta Math. Hung. 41 (1983), 161-168. (1983) MR0704536DOI10.1007/BF01994074
- Móricz, F., 10.1090/S0002-9939-1990-1021902-5, Proc. Am. Math. Soc. 110 (1990), 355-364. (1990) MR1021902DOI10.1090/S0002-9939-1990-1021902-5
- Móricz, F., 10.1016/0022-247X(91)90050-A, J. Math. Anal. Appl. 154 (1991), 452-465. (1991) MR1088644DOI10.1016/0022-247X(91)90050-A
- Móricz, F., 10.1016/0022-247X(91)90051-Z, J. Math. Anal. Appl. 154 (1991), 466-483. (1991) MR1088644DOI10.1016/0022-247X(91)90051-Z
- Móricz, F., 10.1016/0022-247X(92)90049-J, J. Math. Anal. Appl. 165 (1992), 419-437. (1992) MR1155730DOI10.1016/0022-247X(92)90049-J
- Ostaszewski, K., Henstock Integration in the Plane, Mem. Am. Math. Soc. Vol. 63 (1986). (1986) MR0856159
- Saks, S., Theory of the Integral. Second revised edition, G. E. Stechert & Co. New York (1937). (1937)
- Talvila, E., 10.1215/ijm/1258138475, Ill. J. Math. 46 (2002), 1207-1226. (2002) Zbl1037.42007MR1988259DOI10.1215/ijm/1258138475
- Talvila, E., 10.4153/CMB-2005-012-8, Can. Math. Bull. 48 (2005), 133-146. (2005) MR2118770DOI10.4153/CMB-2005-012-8
- Talvila, E., 10.1007/s10587-005-0077-y, Czech. Math. J. 55 (2005), 933-940. (2005) MR2184374DOI10.1007/s10587-005-0077-y
- Young, W. H., On multiple Fourier series, Lond. M. S. Proc. 11 (1912), 133-184. (1912) MR1577218
- Zygmund, A., Trigonometric Series. Volumes I, II and combined. Third edition, Cambridge University Press Cambridge (2002). (2002) MR1963498
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.