The quasi-canonical solution operator to restricted to the Fock-space
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 4, page 947-956
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSchneider, Georg. "The quasi-canonical solution operator to $\bar{\partial }$ restricted to the Fock-space." Czechoslovak Mathematical Journal 55.4 (2005): 947-956. <http://eudml.org/doc/31002>.
@article{Schneider2005,
abstract = {We consider the solution operator $S\:\mathcal \{F\}_\{\mu ,(p,q)\}\rightarrow L^2(\mu )_\{(p,q)\}$ to the $\bar\{\partial \}$-operator restricted to forms with coefficients in $\mathcal \{F\}_\{\mu \}= \bigl \lbrace f\: f \text\{is\} \text\{entire\} \text\{and\} \int _\{\mathbb \{C\}^n\} |f(z)|^2\mathrm \{d\}\mu (z) <\infty \bigr \rbrace $. Here $\mathcal \{F\}_\{\mu ,(p,q)\}$ denotes $(p,q)$-forms with coefficients in $\mathcal \{F\}_\{\mu \}$, $L^2(\mu )$ is the corresponding $L^2$-space and $\mu $ is a suitable rotation-invariant absolutely continuous finite measure. We will develop a general solution formula $S$ to $\bar\{\partial \}$. This solution operator will have the property $Sv\bot \mathcal \{F\}_\{(p,q)\}\, \forall \,v \in \mathcal \{F\}_\{(p,q+1)\}$. As an application of the solution formula we will be able to characterize compactness of the solution operator in terms of compactness of commutators of Toeplitz-operators $[T_\{\bar\{z_i\}\},T_\{z_i\}]= [T^*_\{\{z_i\}\},T_\{z_i\}]\:\mathcal \{F\}_\mu \rightarrow L^2(\mu )$.},
author = {Schneider, Georg},
journal = {Czechoslovak Mathematical Journal},
keywords = {Fock-space; Hankel-operator; reproducing kernel; Fock space; Hankel operator; reproducing kernel},
language = {eng},
number = {4},
pages = {947-956},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The quasi-canonical solution operator to $\bar\{\partial \}$ restricted to the Fock-space},
url = {http://eudml.org/doc/31002},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Schneider, Georg
TI - The quasi-canonical solution operator to $\bar{\partial }$ restricted to the Fock-space
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 947
EP - 956
AB - We consider the solution operator $S\:\mathcal {F}_{\mu ,(p,q)}\rightarrow L^2(\mu )_{(p,q)}$ to the $\bar{\partial }$-operator restricted to forms with coefficients in $\mathcal {F}_{\mu }= \bigl \lbrace f\: f \text{is} \text{entire} \text{and} \int _{\mathbb {C}^n} |f(z)|^2\mathrm {d}\mu (z) <\infty \bigr \rbrace $. Here $\mathcal {F}_{\mu ,(p,q)}$ denotes $(p,q)$-forms with coefficients in $\mathcal {F}_{\mu }$, $L^2(\mu )$ is the corresponding $L^2$-space and $\mu $ is a suitable rotation-invariant absolutely continuous finite measure. We will develop a general solution formula $S$ to $\bar{\partial }$. This solution operator will have the property $Sv\bot \mathcal {F}_{(p,q)}\, \forall \,v \in \mathcal {F}_{(p,q+1)}$. As an application of the solution formula we will be able to characterize compactness of the solution operator in terms of compactness of commutators of Toeplitz-operators $[T_{\bar{z_i}},T_{z_i}]= [T^*_{{z_i}},T_{z_i}]\:\mathcal {F}_\mu \rightarrow L^2(\mu )$.
LA - eng
KW - Fock-space; Hankel-operator; reproducing kernel; Fock space; Hankel operator; reproducing kernel
UR - http://eudml.org/doc/31002
ER -
References
top- 10.1002/cpa.3160140303, Commun. Pure Appl. Math. 14 (1961), 187–214. (1961) Zbl0107.09102MR0157250DOI10.1002/cpa.3160140303
- Compactness in the -Neumann problem, In: Proc. conf. Complex analysis and geometry, Ohio, Ohio State Univ. Math. Res Inst. Publ., 2001, pp. 141–160. (2001) MR1912737
- 10.1007/BF02391775, Acta Math. 113 (1965), 89–152. (1965) MR0179443DOI10.1007/BF02391775
- The Bergman space, the Bloch space, and commutators of multiplikation-operators, Duke Math. J. 53 (1986), 315–332. (1986) MR0850538
- 10.2307/2374685, Amer. J. Math. 110 (1988), 989–1053. (1988) MR0970119DOI10.2307/2374685
- 10.1112/jlms/s2-33.2.355, J. London Math. Soc. 33 (1986), 355–364. (1986) Zbl0604.47014MR0838646DOI10.1112/jlms/s2-33.2.355
- 10.1007/BF02386120, Ark. Math. 26 (1988), 205–219. (1988) MR1050105DOI10.1007/BF02386120
- 10.1512/iumj.1982.31.31062, Indiana Univ. Math. J. 31 (1982), 913–925. (1982) Zbl0514.47020MR0674875DOI10.1512/iumj.1982.31.31062
- 10.1007/BF02387374, Ark. Math. 28 (1990), 183–192. (1990) Zbl0705.47023MR1049650DOI10.1007/BF02387374
- 10.1090/S0002-9939-1990-1013987-7, Proc. Amer. Math. Soc. 109 (1990), 721–730. (1990) Zbl0731.47028MR1013987DOI10.1090/S0002-9939-1990-1013987-7
- 10.5802/afst.1018, Ann. Fac. Sci. Toulouse Math. 11 (2002), 57–70. (2002) MR1986383DOI10.5802/afst.1018
- 10.1090/S0002-9939-01-05953-6, Proc. Amer. Math. Soc. 129 (2001), 3321–3329. (2001) MR1845009DOI10.1090/S0002-9939-01-05953-6
- An Introduction to Complex Analysis in Several Variables, Von Nostand, Princeton, 1966. (1966) MR0203075
- Kompaktheit des -Neumann Operators, Dissertation, Universität Wien, Wien, 2000. (2000)
- 10.2307/1971454, Ann. Math. 130 (1989), 531–565. (1989) MR1025166DOI10.2307/1971454
- 10.1090/S0002-9939-04-07362-9, Proc. Amer. Math. Soc. 132 (2004), 2399–2409. (2004) MR2052418DOI10.1090/S0002-9939-04-07362-9
- 10.1002/mana.200310242, Math. Nachr. 278 (2005), 312–317. (2005) MR2110534DOI10.1002/mana.200310242
- 10.1090/S0002-9939-1988-0954995-2, Proc. Amer. Math. Soc. 103 (1988), 1136–1138. (1988) Zbl0736.35071MR0954995DOI10.1090/S0002-9939-1988-0954995-2
- 10.1006/jfan.1998.3317, J. Functional Analysis 159 (1998), 629–641. (1998) MR1659575DOI10.1006/jfan.1998.3317
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.