The quasi-canonical solution operator to ¯ restricted to the Fock-space

Georg Schneider

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 4, page 947-956
  • ISSN: 0011-4642

Abstract

top
We consider the solution operator S μ , ( p , q ) L 2 ( μ ) ( p , q ) to the ¯ -operator restricted to forms with coefficients in μ = f f is entire and n | f ( z ) | 2 d μ ( z ) < . Here μ , ( p , q ) denotes ( p , q ) -forms with coefficients in μ , L 2 ( μ ) is the corresponding L 2 -space and μ is a suitable rotation-invariant absolutely continuous finite measure. We will develop a general solution formula S to ¯ . This solution operator will have the property S v ( p , q ) v ( p , q + 1 ) . As an application of the solution formula we will be able to characterize compactness of the solution operator in terms of compactness of commutators of Toeplitz-operators [ T z i ¯ , T z i ] = [ T z i * , T z i ] μ L 2 ( μ ) .

How to cite

top

Schneider, Georg. "The quasi-canonical solution operator to $\bar{\partial }$ restricted to the Fock-space." Czechoslovak Mathematical Journal 55.4 (2005): 947-956. <http://eudml.org/doc/31002>.

@article{Schneider2005,
abstract = {We consider the solution operator $S\:\mathcal \{F\}_\{\mu ,(p,q)\}\rightarrow L^2(\mu )_\{(p,q)\}$ to the $\bar\{\partial \}$-operator restricted to forms with coefficients in $\mathcal \{F\}_\{\mu \}= \bigl \lbrace f\: f \text\{is\} \text\{entire\} \text\{and\} \int _\{\mathbb \{C\}^n\} |f(z)|^2\mathrm \{d\}\mu (z) <\infty \bigr \rbrace $. Here $\mathcal \{F\}_\{\mu ,(p,q)\}$ denotes $(p,q)$-forms with coefficients in $\mathcal \{F\}_\{\mu \}$, $L^2(\mu )$ is the corresponding $L^2$-space and $\mu $ is a suitable rotation-invariant absolutely continuous finite measure. We will develop a general solution formula $S$ to $\bar\{\partial \}$. This solution operator will have the property $Sv\bot \mathcal \{F\}_\{(p,q)\}\, \forall \,v \in \mathcal \{F\}_\{(p,q+1)\}$. As an application of the solution formula we will be able to characterize compactness of the solution operator in terms of compactness of commutators of Toeplitz-operators $[T_\{\bar\{z_i\}\},T_\{z_i\}]= [T^*_\{\{z_i\}\},T_\{z_i\}]\:\mathcal \{F\}_\mu \rightarrow L^2(\mu )$.},
author = {Schneider, Georg},
journal = {Czechoslovak Mathematical Journal},
keywords = {Fock-space; Hankel-operator; reproducing kernel; Fock space; Hankel operator; reproducing kernel},
language = {eng},
number = {4},
pages = {947-956},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The quasi-canonical solution operator to $\bar\{\partial \}$ restricted to the Fock-space},
url = {http://eudml.org/doc/31002},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Schneider, Georg
TI - The quasi-canonical solution operator to $\bar{\partial }$ restricted to the Fock-space
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 947
EP - 956
AB - We consider the solution operator $S\:\mathcal {F}_{\mu ,(p,q)}\rightarrow L^2(\mu )_{(p,q)}$ to the $\bar{\partial }$-operator restricted to forms with coefficients in $\mathcal {F}_{\mu }= \bigl \lbrace f\: f \text{is} \text{entire} \text{and} \int _{\mathbb {C}^n} |f(z)|^2\mathrm {d}\mu (z) <\infty \bigr \rbrace $. Here $\mathcal {F}_{\mu ,(p,q)}$ denotes $(p,q)$-forms with coefficients in $\mathcal {F}_{\mu }$, $L^2(\mu )$ is the corresponding $L^2$-space and $\mu $ is a suitable rotation-invariant absolutely continuous finite measure. We will develop a general solution formula $S$ to $\bar{\partial }$. This solution operator will have the property $Sv\bot \mathcal {F}_{(p,q)}\, \forall \,v \in \mathcal {F}_{(p,q+1)}$. As an application of the solution formula we will be able to characterize compactness of the solution operator in terms of compactness of commutators of Toeplitz-operators $[T_{\bar{z_i}},T_{z_i}]= [T^*_{{z_i}},T_{z_i}]\:\mathcal {F}_\mu \rightarrow L^2(\mu )$.
LA - eng
KW - Fock-space; Hankel-operator; reproducing kernel; Fock space; Hankel operator; reproducing kernel
UR - http://eudml.org/doc/31002
ER -

References

top
  1. 10.1002/cpa.3160140303, Commun. Pure Appl. Math. 14 (1961), 187–214. (1961) Zbl0107.09102MR0157250DOI10.1002/cpa.3160140303
  2. Compactness in the ¯ -Neumann problem, In: Proc. conf. Complex analysis and geometry, Ohio, Ohio State Univ. Math. Res Inst. Publ., 2001, pp. 141–160. (2001) MR1912737
  3. 10.1007/BF02391775, Acta Math. 113 (1965), 89–152. (1965) MR0179443DOI10.1007/BF02391775
  4. The Bergman space, the Bloch space, and commutators of multiplikation-operators, Duke Math.  J. 53 (1986), 315–332. (1986) MR0850538
  5. 10.2307/2374685, Amer. J.  Math. 110 (1988), 989–1053. (1988) MR0970119DOI10.2307/2374685
  6. 10.1112/jlms/s2-33.2.355, J.  London Math. Soc. 33 (1986), 355–364. (1986) Zbl0604.47014MR0838646DOI10.1112/jlms/s2-33.2.355
  7. 10.1007/BF02386120, Ark. Math. 26 (1988), 205–219. (1988) MR1050105DOI10.1007/BF02386120
  8. 10.1512/iumj.1982.31.31062, Indiana Univ. Math.  J. 31 (1982), 913–925. (1982) Zbl0514.47020MR0674875DOI10.1512/iumj.1982.31.31062
  9. 10.1007/BF02387374, Ark. Math. 28 (1990), 183–192. (1990) Zbl0705.47023MR1049650DOI10.1007/BF02387374
  10. 10.1090/S0002-9939-1990-1013987-7, Proc. Amer. Math. Soc. 109 (1990), 721–730. (1990) Zbl0731.47028MR1013987DOI10.1090/S0002-9939-1990-1013987-7
  11. 10.5802/afst.1018, Ann. Fac. Sci. Toulouse Math. 11 (2002), 57–70. (2002) MR1986383DOI10.5802/afst.1018
  12. 10.1090/S0002-9939-01-05953-6, Proc. Amer. Math. Soc. 129 (2001), 3321–3329. (2001) MR1845009DOI10.1090/S0002-9939-01-05953-6
  13. An Introduction to Complex Analysis in Several Variables, Von Nostand, Princeton, 1966. (1966) MR0203075
  14. Kompaktheit des ¯ -Neumann Operators, Dissertation, Universität Wien, Wien, 2000. (2000) 
  15. 10.2307/1971454, Ann. Math. 130 (1989), 531–565. (1989) MR1025166DOI10.2307/1971454
  16. 10.1090/S0002-9939-04-07362-9, Proc. Amer. Math. Soc. 132 (2004), 2399–2409. (2004) MR2052418DOI10.1090/S0002-9939-04-07362-9
  17. 10.1002/mana.200310242, Math. Nachr. 278 (2005), 312–317. (2005) MR2110534DOI10.1002/mana.200310242
  18. 10.1090/S0002-9939-1988-0954995-2, Proc. Amer. Math. Soc. 103 (1988), 1136–1138. (1988) Zbl0736.35071MR0954995DOI10.1090/S0002-9939-1988-0954995-2
  19. 10.1006/jfan.1998.3317, J.  Functional Analysis 159 (1998), 629–641. (1998) MR1659575DOI10.1006/jfan.1998.3317

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.