Positive vector measures with given marginals
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 2, page 613-619
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKhurana, Surjit Singh. "Positive vector measures with given marginals." Czechoslovak Mathematical Journal 56.2 (2006): 613-619. <http://eudml.org/doc/31053>.
@article{Khurana2006,
abstract = {Suppose $E$ is an ordered locally convex space, $X_\{1\} $ and $X_\{2\} $ Hausdorff completely regular spaces and $Q$ a uniformly bounded, convex and closed subset of $ M_\{t\}^\{+\}(X_\{1\} \times X_\{2\}, E) $. For $ i=1,2 $, let $ \mu _\{i\} \in M_\{t\}^\{+\}(X_\{i\}, E) $. Then, under some topological and order conditions on $E$, necessary and sufficient conditions are established for the existence of an element in $Q$, having marginals $ \mu _\{1\} $ and $ \mu _\{2\}$.},
author = {Khurana, Surjit Singh},
journal = {Czechoslovak Mathematical Journal},
keywords = {ordered locally convex space; order convergence; marginals; ordered locally convex space; order convergence; marginals},
language = {eng},
number = {2},
pages = {613-619},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Positive vector measures with given marginals},
url = {http://eudml.org/doc/31053},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Khurana, Surjit Singh
TI - Positive vector measures with given marginals
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 2
SP - 613
EP - 619
AB - Suppose $E$ is an ordered locally convex space, $X_{1} $ and $X_{2} $ Hausdorff completely regular spaces and $Q$ a uniformly bounded, convex and closed subset of $ M_{t}^{+}(X_{1} \times X_{2}, E) $. For $ i=1,2 $, let $ \mu _{i} \in M_{t}^{+}(X_{i}, E) $. Then, under some topological and order conditions on $E$, necessary and sufficient conditions are established for the existence of an element in $Q$, having marginals $ \mu _{1} $ and $ \mu _{2}$.
LA - eng
KW - ordered locally convex space; order convergence; marginals; ordered locally convex space; order convergence; marginals
UR - http://eudml.org/doc/31053
ER -
References
top- Positive Operators, Academic Press, 1985. (1985) MR0809372
- Vector Measures, Amer. Math. Soc. Surveys, Vol. 15, Amer. Math. Soc., 1977. MR0453964
- Topological rings of sets, continuous set functions, integration I, II, Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys. 20 (1972), 269–276. (1972) MR0306432
- Real and Abstract Analysis, Springer-Verlag, 1965. (1965) MR0367121
- 10.1090/S0002-9939-98-04236-1, Proc. Amer. Math. Soc. 126 (1998), 1669–1671. (1998) MR1443832DOI10.1090/S0002-9939-98-04236-1
- Probability in Banach spaces, vol. 598, Lecture Notes in Math., Springer-Verlag, 1977, pp. 1–186. (1977) MR0461610
- 10.1090/S0002-9939-00-05384-3, Proc. Amer. Math. Soc. 128 (2000), 3291–3300. (2000) MR1670387DOI10.1090/S0002-9939-00-05384-3
- Extension and regularity of group-valued Baire measures, Bull. Acad. Polon. Sc., Ser. Math. Astro. Phys. 22 (1974), 891–895. (1974) Zbl0275.28012MR0393412
- 10.1090/S0002-9947-1978-0492297-X, Trans. Amer. Math. Soc. 241 (1978), 195–211. (1978) MR0492297DOI10.1090/S0002-9947-1978-0492297-X
- Vector Measures and Control Systems, North-Holland, 1976. (1976) MR0499068
- 10.2140/pjm.1970.33.157, Pac. J. Math. 33 (1970), 157–165. (1970) Zbl0195.14303MR0259064DOI10.2140/pjm.1970.33.157
- Banach Lattices, Springer-Verlag, 1991. (1991) MR1128093
- Topological Vector Spaces, Springer Verlag, 1986. (1986) MR0342978
- 10.1214/aoms/1177700153, Ann. Math. Statist. 36 (1965), 423–439. (1965) Zbl0135.18701MR0177430DOI10.1214/aoms/1177700153
- 10.1090/trans2/048/10, Amer. Math. Soc. Transl. 48 (1965), 161–228. (1965) DOI10.1090/trans2/048/10
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.