On the inertia sets of some symmetric sign patterns
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 3, page 875-883
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFonseca, C. M. da. "On the inertia sets of some symmetric sign patterns." Czechoslovak Mathematical Journal 56.3 (2006): 875-883. <http://eudml.org/doc/31073>.
@article{Fonseca2006,
abstract = {A matrix whose entries consist of elements from the set $\lbrace +,-,0\rbrace $ is a sign pattern matrix. Using a linear algebra theoretical approach we generalize of some recent results due to Hall, Li and others involving the inertia of symmetric tridiagonal sign matrices.},
author = {Fonseca, C. M. da},
journal = {Czechoslovak Mathematical Journal},
keywords = {inertia; sign pattern matrix; tridiagonal matrix; inertia; sign pattern matrix; tridiagonal matrix},
language = {eng},
number = {3},
pages = {875-883},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the inertia sets of some symmetric sign patterns},
url = {http://eudml.org/doc/31073},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Fonseca, C. M. da
TI - On the inertia sets of some symmetric sign patterns
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 3
SP - 875
EP - 883
AB - A matrix whose entries consist of elements from the set $\lbrace +,-,0\rbrace $ is a sign pattern matrix. Using a linear algebra theoretical approach we generalize of some recent results due to Hall, Li and others involving the inertia of symmetric tridiagonal sign matrices.
LA - eng
KW - inertia; sign pattern matrix; tridiagonal matrix; inertia; sign pattern matrix; tridiagonal matrix
UR - http://eudml.org/doc/31073
ER -
References
top- 10.1080/03081089208818128, Linear and Multilinear Algebra 31 (1992), 119–130. (1992) MR1199047DOI10.1080/03081089208818128
- The inertia of certain skew-triangular block matrices, Linear Algebra Appl. 160 (1992), 75–85. (1992) MR1137844
- A combinatorial converse to the Perron-Frobenius theorem, Linear Algebra Appl. 136 (1990), 173–180. (1990) MR1061544
- 10.1080/03081089108818079, Linear and Multilinear Algebra 29 (1991), 299–311. (1991) MR1119461DOI10.1080/03081089108818079
- 10.1023/B:CMAJ.0000024531.10708.9f, Czechoslovak Math. J. 53 (2003), 925–934. (2003) MR2018840DOI10.1023/B:CMAJ.0000024531.10708.9f
- Inertia sets of symmetric sign pattern matrices, Numer. Math. J. Chinese Univ. (English Ser.) 10 (2001), 226–240. (2001) MR1884971
- Symmetric sign pattern matrices that require unique inertia, Linear Algebra Appl. 338 (2001), 153–169. (2001) MR1861120
- Matrix Analysis, Cambridge University Press, Cambridge, 1985. (1985) MR0832183
- Some sign patterns that preclude matrix stability, SIAM J. Matrix Anal. Appl. 9 (1988), 19–25. (1988) MR0938055
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.