On the inertia sets of some symmetric sign patterns

C. M. da Fonseca

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 3, page 875-883
  • ISSN: 0011-4642

Abstract

top
A matrix whose entries consist of elements from the set { + , - , 0 } is a sign pattern matrix. Using a linear algebra theoretical approach we generalize of some recent results due to Hall, Li and others involving the inertia of symmetric tridiagonal sign matrices.

How to cite

top

Fonseca, C. M. da. "On the inertia sets of some symmetric sign patterns." Czechoslovak Mathematical Journal 56.3 (2006): 875-883. <http://eudml.org/doc/31073>.

@article{Fonseca2006,
abstract = {A matrix whose entries consist of elements from the set $\lbrace +,-,0\rbrace $ is a sign pattern matrix. Using a linear algebra theoretical approach we generalize of some recent results due to Hall, Li and others involving the inertia of symmetric tridiagonal sign matrices.},
author = {Fonseca, C. M. da},
journal = {Czechoslovak Mathematical Journal},
keywords = {inertia; sign pattern matrix; tridiagonal matrix; inertia; sign pattern matrix; tridiagonal matrix},
language = {eng},
number = {3},
pages = {875-883},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the inertia sets of some symmetric sign patterns},
url = {http://eudml.org/doc/31073},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Fonseca, C. M. da
TI - On the inertia sets of some symmetric sign patterns
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 3
SP - 875
EP - 883
AB - A matrix whose entries consist of elements from the set $\lbrace +,-,0\rbrace $ is a sign pattern matrix. Using a linear algebra theoretical approach we generalize of some recent results due to Hall, Li and others involving the inertia of symmetric tridiagonal sign matrices.
LA - eng
KW - inertia; sign pattern matrix; tridiagonal matrix; inertia; sign pattern matrix; tridiagonal matrix
UR - http://eudml.org/doc/31073
ER -

References

top
  1. 10.1080/03081089208818128, Linear and Multilinear Algebra 31 (1992), 119–130. (1992) MR1199047DOI10.1080/03081089208818128
  2. The inertia of certain skew-triangular block matrices, Linear Algebra Appl. 160 (1992), 75–85. (1992) MR1137844
  3. A combinatorial converse to the Perron-Frobenius theorem, Linear Algebra Appl. 136 (1990), 173–180. (1990) MR1061544
  4. 10.1080/03081089108818079, Linear and Multilinear Algebra 29 (1991), 299–311. (1991) MR1119461DOI10.1080/03081089108818079
  5. 10.1023/B:CMAJ.0000024531.10708.9f, Czechoslovak Math. J. 53 (2003), 925–934. (2003) MR2018840DOI10.1023/B:CMAJ.0000024531.10708.9f
  6. Inertia sets of symmetric sign pattern matrices, Numer. Math. J. Chinese Univ. (English Ser.) 10 (2001), 226–240. (2001) MR1884971
  7. Symmetric sign pattern matrices that require unique inertia, Linear Algebra Appl. 338 (2001), 153–169. (2001) MR1861120
  8. Matrix Analysis, Cambridge University Press, Cambridge, 1985. (1985) MR0832183
  9. Some sign patterns that preclude matrix stability, SIAM J. Matrix Anal. Appl. 9 (1988), 19–25. (1988) MR0938055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.