Symmetric sign patterns with maximal inertias
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 1, page 101-104
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKim, In-Jae, and Waters, Charles. "Symmetric sign patterns with maximal inertias." Czechoslovak Mathematical Journal 60.1 (2010): 101-104. <http://eudml.org/doc/37992>.
@article{Kim2010,
abstract = {The inertia of an $n$ by $n$ symmetric sign pattern is called maximal when it is not a proper subset of the inertia of another symmetric sign pattern of order $n$. In this note we classify all the maximal inertias for symmetric sign patterns of order $n$, and identify symmetric sign patterns with maximal inertias by using a rank-one perturbation.},
author = {Kim, In-Jae, Waters, Charles},
journal = {Czechoslovak Mathematical Journal},
keywords = {eigenvalue; inertia; maximal inertia; rank-one perturbation; symmetric sign pattern; eigenvalue; inertia; maximal inertia; rank-one perturbation; symmetric sign pattern},
language = {eng},
number = {1},
pages = {101-104},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Symmetric sign patterns with maximal inertias},
url = {http://eudml.org/doc/37992},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Kim, In-Jae
AU - Waters, Charles
TI - Symmetric sign patterns with maximal inertias
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 101
EP - 104
AB - The inertia of an $n$ by $n$ symmetric sign pattern is called maximal when it is not a proper subset of the inertia of another symmetric sign pattern of order $n$. In this note we classify all the maximal inertias for symmetric sign patterns of order $n$, and identify symmetric sign patterns with maximal inertias by using a rank-one perturbation.
LA - eng
KW - eigenvalue; inertia; maximal inertia; rank-one perturbation; symmetric sign pattern; eigenvalue; inertia; maximal inertia; rank-one perturbation; symmetric sign pattern
UR - http://eudml.org/doc/37992
ER -
References
top- Cavers, M. S., Meulen, K. N. Vander, Spectrally and inertially arbitrary sign patterns, Linear Algebra Appl. 394 (2005), 53-72. (2005) MR2100576
- Fonseca, C. M. da, 10.1007/s10587-006-0062-0, Czechoslovak Math. J. 56 (2006), 875-883. (2006) Zbl1164.15318MR2261659DOI10.1007/s10587-006-0062-0
- Gao, Y., Shao, Y., 10.1023/B:CMAJ.0000024531.10708.9f, Czechoslovak Math. J. 53 (2003), 925-934. (2003) Zbl1080.15501MR2018840DOI10.1023/B:CMAJ.0000024531.10708.9f
- Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge Univeristy Press Cambridge (1985). (1985) Zbl0576.15001MR0832183
- Hall, F. J., Li, Z., Inertia sets of symmetric sign pattern matrices, Numer. Math., J. Chin. Univ. (English Ser.) 10 (2001), 226-240. (2001) Zbl0997.15010MR1884971
- Hall, F. J., Li, Z., Wang, Di, Symmetric sign pattern matrices that require unique inertia, Linear Algebra Appl. 338 (2001), 153-169. (2001) Zbl0994.15028MR1861120
- Hall, F. J., Li, Z., Wang, Di, Symmetric sign pattern matrices that require unique inertia, Linear Algebra Appl. 338 (2001), 153-169. (2001) Zbl0994.15028MR1861120
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.