Steady state coexistence solutions of reaction-diffusion competition models
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 4, page 1165-1183
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- On the steady-state problem for the Volterra-Lotka competition model with diffusion, Houston Journal of mathematics 13 (1987), 337–352. (1987) MR0916141
- On the uniqueness and stability of positive solutions in the Volterra-Lotka competition model with diffusion, Houston J. Math. 15 (1989), 341–361. (1989) MR1032394
- 10.1137/0144080, Siam J. Appl. Math. 44 (1984), 1112–1132. (1984) MR0766192DOI10.1137/0144080
- Lecture note for applied analysis at Michigan State University, .
- Methods of Mathematical Physics, Vol. 1, Interscience, New York, 1961. (1961)
- Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model, Comm. Pure and Appl. Math. 12 (1994), 1571–1594. (1994) MR1303221
- Existence and uniqueness for some competition models with diffusion, C.R. Acad. Sci. Paris, 313 Série 1 (1991), 933–938. (1991) MR1143448
- On uniqueness of positive solutions of nonlinear elliptic boundary value problems, Math. Z. 165 (1977), 17–18. (1977) Zbl0352.35046MR0442468
- Positive solutions to general elliptic competition models, Differential and Integral Equations 4 (1991), 817–834. (1991) MR1108062
- 10.1016/0022-247X(80)90028-1, J. Math. Anal. Appl. 73 (1980), 204–218. (1980) Zbl0427.35011MR0560943DOI10.1016/0022-247X(80)90028-1
- Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs, N. J., 1967. (1967) MR0219861
- Nonlinear Problems in Nuclear Reactor Analysis, In nonlinear Problems in the Physical Sciences and Biology, Lecture notes in Mathematics 322, Springer, Berlin, 1973, pp. 298–307. (1973)