Nodal solutions for a second-order m -point boundary value problem

Ruyun Ma

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 4, page 1243-1263
  • ISSN: 0011-4642

Abstract

top
We study the existence of nodal solutions of the m -point boundary value problem u ' ' + f ( u ) = 0 , 0 < t < 1 , u ' ( 0 ) = 0 , u ( 1 ) = i = 1 m - 2 α i u ( η i ) where η i ( i = 1 , 2 , , m - 2 ) with 0 < η 1 < η 2 < < η m - 2 < 1 , and α i ( i = 1 , 2 , , m - 2 ) with α i > 0 and 0 < i = 1 m - 2 α i < 1 . We give conditions on the ratio f ( s ) / s at infinity and zero that guarantee the existence of nodal solutions. The proofs of the main results are based on bifurcation techniques.

How to cite

top

Ma, Ruyun. "Nodal solutions for a second-order $m$-point boundary value problem." Czechoslovak Mathematical Journal 56.4 (2006): 1243-1263. <http://eudml.org/doc/31103>.

@article{Ma2006,
abstract = {We study the existence of nodal solutions of the $m$-point boundary value problem \[ u^\{\prime \prime \}+ f(u)=0, \quad 0<t<1, u^\{\prime \}(0)=0, \quad u(1)=\sum ^\{m-2\}\_\{i=1\} \alpha \_i u(\eta \_i) \] where $\eta _i\in \mathbb \{Q\}$$(i=1, 2, \cdots , m-2)$ with $0<\eta _1<\eta _2<\cdots <\eta _\{m-2\}<1$, and $\alpha _i\in \mathbb \{R\}$$(i=1, 2, \cdots , m-2)$ with $\alpha _i>0$ and $0<\sum \nolimits ^\{m-2\}_\{i=1\} \alpha _i < 1$. We give conditions on the ratio $f(s)/s$ at infinity and zero that guarantee the existence of nodal solutions. The proofs of the main results are based on bifurcation techniques.},
author = {Ma, Ruyun},
journal = {Czechoslovak Mathematical Journal},
keywords = {multiplicity results; eigenvalues; bifurcation methods; nodal zeros; multi-point boundary value problems; multiplicity results; eigenvalues; bifurcation methods; nodal zeros; multi-point boundary value problems},
language = {eng},
number = {4},
pages = {1243-1263},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nodal solutions for a second-order $m$-point boundary value problem},
url = {http://eudml.org/doc/31103},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Ma, Ruyun
TI - Nodal solutions for a second-order $m$-point boundary value problem
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 4
SP - 1243
EP - 1263
AB - We study the existence of nodal solutions of the $m$-point boundary value problem \[ u^{\prime \prime }+ f(u)=0, \quad 0<t<1, u^{\prime }(0)=0, \quad u(1)=\sum ^{m-2}_{i=1} \alpha _i u(\eta _i) \] where $\eta _i\in \mathbb {Q}$$(i=1, 2, \cdots , m-2)$ with $0<\eta _1<\eta _2<\cdots <\eta _{m-2}<1$, and $\alpha _i\in \mathbb {R}$$(i=1, 2, \cdots , m-2)$ with $\alpha _i>0$ and $0<\sum \nolimits ^{m-2}_{i=1} \alpha _i < 1$. We give conditions on the ratio $f(s)/s$ at infinity and zero that guarantee the existence of nodal solutions. The proofs of the main results are based on bifurcation techniques.
LA - eng
KW - multiplicity results; eigenvalues; bifurcation methods; nodal zeros; multi-point boundary value problems; multiplicity results; eigenvalues; bifurcation methods; nodal zeros; multi-point boundary value problems
UR - http://eudml.org/doc/31103
ER -

References

top
  1. 10.1016/0022-247X(80)90287-5, J.  Math. Anal. Appl. 73 (1980), 411–422. (1980) MR0563992DOI10.1016/0022-247X(80)90287-5
  2. A sign-changing solution for a superlinear Dirichlet problem.  II, Proceedings of the Fifth Mississippi State Conference on Differential Equations and Computational Simulations (Mississippi State, MS, 2001), pp. 101–107. MR1976635
  3. 10.1090/S0002-9939-1994-1204373-9, Proc. Amer. Math. Soc. 120 (1994), 743–748. (1994) MR1204373DOI10.1090/S0002-9939-1994-1204373-9
  4. 10.1017/S0013091502000391, Proc. Edin. Math. Soc. 46 (2003), 279–292. (2003) Zbl1069.34036MR1998561DOI10.1017/S0013091502000391
  5. Nodal solutions for nonlinear eigenvalue problems, Nonlinear Analysis, Theory Methods Appl. 59 (2004), 717–718. (2004) MR2096325
  6. 10.1016/j.na.2003.10.020, Nonlinear Analysis TMA 56 (2004), 919–935. (2004) MR2036055DOI10.1016/j.na.2003.10.020
  7. 10.1016/0022-1236(71)90030-9, J.  Funct. Anal. 7 (1971), 487–513. (1971) Zbl0212.16504MR0301587DOI10.1016/0022-1236(71)90030-9
  8. 10.1023/A:1022491900369, Czechoslovak Math.  J. 49 (1999), 241–248. (1999) MR1692485DOI10.1023/A:1022491900369
  9. 10.1016/0362-546X(86)90043-X, Nonlinear Analysis TMA 10 (1986), 157–163. (1986) MR0825214DOI10.1016/0362-546X(86)90043-X
  10. 10.1016/S0022-0396(02)00146-8, J.  Differential Equations 188 (2003), 461–472. (2003) MR1954290DOI10.1016/S0022-0396(02)00146-8
  11. 10.1016/S0362-546X(01)00547-8, Nonlinear Analysis 47 (2001), 4319–4332. (2001) Zbl1042.34527MR1975828DOI10.1016/S0362-546X(01)00547-8
  12. Multiple sign-changing solutions for some m -point boundary value problems, Electronic Journal of Differential Equations 89 (2004), 1–14. (2004) Zbl1058.34013MR2075428

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.