Nodal solutions for a second-order -point boundary value problem
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 4, page 1243-1263
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMa, Ruyun. "Nodal solutions for a second-order $m$-point boundary value problem." Czechoslovak Mathematical Journal 56.4 (2006): 1243-1263. <http://eudml.org/doc/31103>.
@article{Ma2006,
abstract = {We study the existence of nodal solutions of the $m$-point boundary value problem \[ u^\{\prime \prime \}+ f(u)=0, \quad 0<t<1, u^\{\prime \}(0)=0, \quad u(1)=\sum ^\{m-2\}\_\{i=1\} \alpha \_i u(\eta \_i) \]
where $\eta _i\in \mathbb \{Q\}$$(i=1, 2, \cdots , m-2)$ with $0<\eta _1<\eta _2<\cdots <\eta _\{m-2\}<1$, and $\alpha _i\in \mathbb \{R\}$$(i=1, 2, \cdots , m-2)$ with $\alpha _i>0$ and $0<\sum \nolimits ^\{m-2\}_\{i=1\} \alpha _i < 1$. We give conditions on the ratio $f(s)/s$ at infinity and zero that guarantee the existence of nodal solutions. The proofs of the main results are based on bifurcation techniques.},
author = {Ma, Ruyun},
journal = {Czechoslovak Mathematical Journal},
keywords = {multiplicity results; eigenvalues; bifurcation methods; nodal zeros; multi-point boundary value problems; multiplicity results; eigenvalues; bifurcation methods; nodal zeros; multi-point boundary value problems},
language = {eng},
number = {4},
pages = {1243-1263},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nodal solutions for a second-order $m$-point boundary value problem},
url = {http://eudml.org/doc/31103},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Ma, Ruyun
TI - Nodal solutions for a second-order $m$-point boundary value problem
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 4
SP - 1243
EP - 1263
AB - We study the existence of nodal solutions of the $m$-point boundary value problem \[ u^{\prime \prime }+ f(u)=0, \quad 0<t<1, u^{\prime }(0)=0, \quad u(1)=\sum ^{m-2}_{i=1} \alpha _i u(\eta _i) \]
where $\eta _i\in \mathbb {Q}$$(i=1, 2, \cdots , m-2)$ with $0<\eta _1<\eta _2<\cdots <\eta _{m-2}<1$, and $\alpha _i\in \mathbb {R}$$(i=1, 2, \cdots , m-2)$ with $\alpha _i>0$ and $0<\sum \nolimits ^{m-2}_{i=1} \alpha _i < 1$. We give conditions on the ratio $f(s)/s$ at infinity and zero that guarantee the existence of nodal solutions. The proofs of the main results are based on bifurcation techniques.
LA - eng
KW - multiplicity results; eigenvalues; bifurcation methods; nodal zeros; multi-point boundary value problems; multiplicity results; eigenvalues; bifurcation methods; nodal zeros; multi-point boundary value problems
UR - http://eudml.org/doc/31103
ER -
References
top- 10.1016/0022-247X(80)90287-5, J. Math. Anal. Appl. 73 (1980), 411–422. (1980) MR0563992DOI10.1016/0022-247X(80)90287-5
- A sign-changing solution for a superlinear Dirichlet problem. II, Proceedings of the Fifth Mississippi State Conference on Differential Equations and Computational Simulations (Mississippi State, MS, 2001), pp. 101–107. MR1976635
- 10.1090/S0002-9939-1994-1204373-9, Proc. Amer. Math. Soc. 120 (1994), 743–748. (1994) MR1204373DOI10.1090/S0002-9939-1994-1204373-9
- 10.1017/S0013091502000391, Proc. Edin. Math. Soc. 46 (2003), 279–292. (2003) Zbl1069.34036MR1998561DOI10.1017/S0013091502000391
- Nodal solutions for nonlinear eigenvalue problems, Nonlinear Analysis, Theory Methods Appl. 59 (2004), 717–718. (2004) MR2096325
- 10.1016/j.na.2003.10.020, Nonlinear Analysis TMA 56 (2004), 919–935. (2004) MR2036055DOI10.1016/j.na.2003.10.020
- 10.1016/0022-1236(71)90030-9, J. Funct. Anal. 7 (1971), 487–513. (1971) Zbl0212.16504MR0301587DOI10.1016/0022-1236(71)90030-9
- 10.1023/A:1022491900369, Czechoslovak Math. J. 49 (1999), 241–248. (1999) MR1692485DOI10.1023/A:1022491900369
- 10.1016/0362-546X(86)90043-X, Nonlinear Analysis TMA 10 (1986), 157–163. (1986) MR0825214DOI10.1016/0362-546X(86)90043-X
- 10.1016/S0022-0396(02)00146-8, J. Differential Equations 188 (2003), 461–472. (2003) MR1954290DOI10.1016/S0022-0396(02)00146-8
- 10.1016/S0362-546X(01)00547-8, Nonlinear Analysis 47 (2001), 4319–4332. (2001) Zbl1042.34527MR1975828DOI10.1016/S0362-546X(01)00547-8
- Multiple sign-changing solutions for some -point boundary value problems, Electronic Journal of Differential Equations 89 (2004), 1–14. (2004) Zbl1058.34013MR2075428
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.