A note on the existence of positive solutions of one-dimensional -Laplacian boundary value problems
Applications of Mathematics (2010)
- Volume: 55, Issue: 3, page 241-264
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLiu, Yuji. "A note on the existence of positive solutions of one-dimensional $p$-Laplacian boundary value problems." Applications of Mathematics 55.3 (2010): 241-264. <http://eudml.org/doc/37846>.
@article{Liu2010,
abstract = {This paper is concerned with the existence of positive solutions of a multi-point boundary value problem for higher-order differential equation with one-dimensional $p$-Laplacian. Examples are presented to illustrate the main results. The result in this paper generalizes those in existing papers.},
author = {Liu, Yuji},
journal = {Applications of Mathematics},
keywords = {one-dimension $p$-Laplacian differential equation; nonlocal boundary value problem; positive solution; fixed-point theorem; one-dimension -Laplacian differential equation; nonlocal boundary value problem; positive solution; fixed-point theorem},
language = {eng},
number = {3},
pages = {241-264},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the existence of positive solutions of one-dimensional $p$-Laplacian boundary value problems},
url = {http://eudml.org/doc/37846},
volume = {55},
year = {2010},
}
TY - JOUR
AU - Liu, Yuji
TI - A note on the existence of positive solutions of one-dimensional $p$-Laplacian boundary value problems
JO - Applications of Mathematics
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 3
SP - 241
EP - 264
AB - This paper is concerned with the existence of positive solutions of a multi-point boundary value problem for higher-order differential equation with one-dimensional $p$-Laplacian. Examples are presented to illustrate the main results. The result in this paper generalizes those in existing papers.
LA - eng
KW - one-dimension $p$-Laplacian differential equation; nonlocal boundary value problem; positive solution; fixed-point theorem; one-dimension -Laplacian differential equation; nonlocal boundary value problem; positive solution; fixed-point theorem
UR - http://eudml.org/doc/37846
ER -
References
top- Agarwal, R. P., O'Regan, D., Wong, P. J. Y., Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Dordrecht (1999). (1999) Zbl1157.34301MR1680024
- Bai, C., Fang, J., 10.1016/S0096-3003(02)00227-8, Appl. Math. Comput. 140 (2003), 297-305. (2003) Zbl1030.34026MR1953901DOI10.1016/S0096-3003(02)00227-8
- Bai, C., Fang, J., 10.1016/S0022-247X(02)00509-7, J. Math. Anal. Appl. 281 (2003), 76-85. (2003) MR1980075DOI10.1016/S0022-247X(02)00509-7
- delPino, M. A., Elgueta, M., Manásevich, R. F., 10.1016/0022-0396(89)90093-4, J. Differ. Equ. 80 (1989), 1-13. (1989) MR1003248DOI10.1016/0022-0396(89)90093-4
- delPino, M. A., Manásevich, R. F., Multiple solutions for the -Laplacian under global nonresonance, Proc. Am. Math. Soc. 112 (1991), 131-138. (1991) MR1045589
- Gaines, R. E., Mawhin, J. L., 10.1007/BFb0089537, Springer Berlin (1977). (1977) MR0637067DOI10.1007/BFb0089537
- Guo, Y., Ge, W., 10.1016/S0022-247X(03)00476-1, J. Math. Anal. Appl. 286 (2003), 491-508. (2003) MR2008845DOI10.1016/S0022-247X(03)00476-1
- Ji, D., Feng, M., Ge, W., 10.1016/j.amc.2007.06.028, Appl. Math. Comput. 196 (2008), 511-520. (2008) Zbl1138.34014MR2388707DOI10.1016/j.amc.2007.06.028
- Karakostas, G. L., Triple positive solutions for the -Laplacian when is a sup-multiplicative-like function, Electron. Diff. Equ. 69 (2004), 1-13. (2004) Zbl1057.34010MR2057656
- Karakostas, G. L., Positive solutions for the -Laplacian when is a sup-multiplicative-like function, Electron. Diff. Equ. 68 (2004), 1-12. (2004) Zbl1057.34010MR2057655
- Kosmatov, N., 10.1016/j.jmaa.2004.11.008, J. Math. Anal. Appl. 309 (2005), 25-36. (2005) Zbl1085.34011MR2154024DOI10.1016/j.jmaa.2004.11.008
- Lan, K. D., 10.1112/S002461070100206X, J. Lond. Math. Soc., Ser. II 63 (2001), 690-704. (2001) Zbl1032.34019MR1825983DOI10.1112/S002461070100206X
- Lian, W.-C., Wong, F., 10.1016/S0893-9659(00)00051-3, Appl. Math. Lett. 13 (2000), 35-43. (2000) Zbl0964.34018MR1772689DOI10.1016/S0893-9659(00)00051-3
- Liang, R., Peng, J., Shen, J., 10.1016/j.amc.2007.07.025, Appl. Math. Comput. 196 (2008), 931-940. (2008) Zbl1140.34313MR2388746DOI10.1016/j.amc.2007.07.025
- Liu, B., 10.1016/S0096-3003(03)00770-7, Appl. Math. Comput. 155 (2004), 179-203. (2004) Zbl1068.34011MR2078102DOI10.1016/S0096-3003(03)00770-7
- Liu, Y., Ge, W., 10.1016/S0022-247X(02)00557-7, J. Math. Anal. Appl. 277 (2003), 293-302. (2003) Zbl1026.34028MR1954477DOI10.1016/S0022-247X(02)00557-7
- Lü, H., O'Regan, D., Zhong, C., 10.1016/S0096-3003(01)00240-5, Appl. Math. Comput. 133 (2002), 407-422. (2002) MR1924626DOI10.1016/S0096-3003(01)00240-5
- Ma, R., 10.1017/S0013091502000391, Proc. Edinb. Math. Soc., II. Ser. 46 (2003), 279-292. (2003) Zbl1069.34036MR1998561DOI10.1017/S0013091502000391
- Ma, R., 10.1016/S0362-546X(99)00152-2, Nonlinear Anal., Theory Methods Appl. 42 (2000), 1003-1010. (2000) Zbl0973.34014MR1780450DOI10.1016/S0362-546X(99)00152-2
- Ma, R., 10.1007/s10587-006-0092-7, Czech. Math. J. 56 (2006), 1243-1263. (2006) Zbl1164.34329MR2280807DOI10.1007/s10587-006-0092-7
- Ma, R., Castaneda, N., 10.1006/jmaa.2000.7320, J. Math. Anal. Appl. 256 (2001), 556-567. (2001) Zbl0988.34009MR1821757DOI10.1006/jmaa.2000.7320
- Ma, R., Thompson, B., 10.1016/j.jmaa.2003.12.046, J. Math. Anal. Appl. 297 (2004), 24-37. (2004) Zbl1057.34011MR2079645DOI10.1016/j.jmaa.2003.12.046
- Wang, Y., Zhao, W., Ge, W., 10.1016/j.jmaa.2006.03.028, J. Math. Anal. Appl. 326 (2007), 641-654. (2007) Zbl1119.34050MR2277809DOI10.1016/j.jmaa.2006.03.028
- Webb, J. R. L., 10.1016/S0362-546X(01)00547-8, Nonlinear Anal., Theory Methods Appl. 47 (2001), 4319-4332. (2001) Zbl1042.34527MR1975828DOI10.1016/S0362-546X(01)00547-8
- Zhang, G., Sun, J., 10.1016/j.jmaa.2003.11.034, J. Math. Anal. Appl. 291 (2004), 406-418. (2004) Zbl1069.34037MR2038179DOI10.1016/j.jmaa.2003.11.034
- Zhang, Z., Wang, J., 10.1016/j.jmaa.2004.03.057, J. Math. Anal. Appl. 295 (2004), 502-512. (2004) Zbl1056.34018MR2072028DOI10.1016/j.jmaa.2004.03.057
Citations in EuDML Documents
top- Luís Almeida, Lucio Damascelli, Yuxin Ge, A few symmetry results for nonlinear elliptic PDE on noncompact manifolds
- Mohamed Saad Bouh Elemine Vall, Ahmed Ahmed, Abdelfattah Touzani, Abdelmoujib Benkirane, Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form
- Stanislav I Pohozaev, Alberto Tesei, Nonexistence of local solutions to semilinear partial differential inequalities
- Patrizia Pucci, Raffaella Servadei, Existence, non-existence and regularity of radial ground states for p-laplacian equations with singular weights
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.