Intertwining numbers; the n -rowed shapes

Hyoung J. Ko; Kyoung J. Lee

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 1, page 53-65
  • ISSN: 0011-4642

Abstract

top
A fairly old problem in modular representation theory is to determine the vanishing behavior of the H o m groups and higher E x t groups of Weyl modules and to compute the dimension of the / ( p ) -vector space H o m A ¯ r ( K ¯ λ , K ¯ μ ) for any partitions λ , μ of r , which is the intertwining number. K. Akin, D. A. Buchsbaum, and D. Flores solved this problem in the cases of partitions of length two and three. In this paper, we describe the vanishing behavior of the groups H o m A ¯ r ( K ¯ λ , K ¯ μ ) and provide a new formula for the intertwining number for any n -rowed partition.

How to cite

top

Ko, Hyoung J., and Lee, Kyoung J.. "Intertwining numbers; the $n$-rowed shapes." Czechoslovak Mathematical Journal 57.1 (2007): 53-65. <http://eudml.org/doc/31112>.

@article{Ko2007,
abstract = {A fairly old problem in modular representation theory is to determine the vanishing behavior of the $\mathop \{\mathrm \{H\}om\}\nolimits $ groups and higher $\mathop \{\mathrm \{E\}xt\}\nolimits $ groups of Weyl modules and to compute the dimension of the $\mathbb \{Z\} /(p)$-vector space $\mathop \{\mathrm \{H\}om\}\nolimits _\{\bar\{A\}_r\}(\bar\{K\}_\lambda ,\bar\{K\}_\mu )$ for any partitions $\lambda $, $\mu $ of $r$, which is the intertwining number. K. Akin, D. A. Buchsbaum, and D. Flores solved this problem in the cases of partitions of length two and three. In this paper, we describe the vanishing behavior of the groups $\mathop \{\mathrm \{H\}om\}\nolimits _\{\bar\{A\}_r\}(\bar\{K\}_\lambda ,\bar\{K\}_\mu )$ and provide a new formula for the intertwining number for any $n$-rowed partition.},
author = {Ko, Hyoung J., Lee, Kyoung J.},
journal = {Czechoslovak Mathematical Journal},
keywords = {representation theory; intertwining number; Weyl module; $\mathop \{\mathrm \{E\}xt\}\nolimits $ group; partition; modular representations; intertwining numbers; Weyl modules},
language = {eng},
number = {1},
pages = {53-65},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Intertwining numbers; the $n$-rowed shapes},
url = {http://eudml.org/doc/31112},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Ko, Hyoung J.
AU - Lee, Kyoung J.
TI - Intertwining numbers; the $n$-rowed shapes
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 53
EP - 65
AB - A fairly old problem in modular representation theory is to determine the vanishing behavior of the $\mathop {\mathrm {H}om}\nolimits $ groups and higher $\mathop {\mathrm {E}xt}\nolimits $ groups of Weyl modules and to compute the dimension of the $\mathbb {Z} /(p)$-vector space $\mathop {\mathrm {H}om}\nolimits _{\bar{A}_r}(\bar{K}_\lambda ,\bar{K}_\mu )$ for any partitions $\lambda $, $\mu $ of $r$, which is the intertwining number. K. Akin, D. A. Buchsbaum, and D. Flores solved this problem in the cases of partitions of length two and three. In this paper, we describe the vanishing behavior of the groups $\mathop {\mathrm {H}om}\nolimits _{\bar{A}_r}(\bar{K}_\lambda ,\bar{K}_\mu )$ and provide a new formula for the intertwining number for any $n$-rowed partition.
LA - eng
KW - representation theory; intertwining number; Weyl module; $\mathop {\mathrm {E}xt}\nolimits $ group; partition; modular representations; intertwining numbers; Weyl modules
UR - http://eudml.org/doc/31112
ER -

References

top
  1. 10.1016/0001-8708(85)90115-X, Adv. Math. 58 (1985), 149–200. (1985) MR0814749DOI10.1016/0001-8708(85)90115-X
  2. 10.1016/0001-8708(88)90027-8, Adv. Math. 72 (1988), 171–210. (1988) MR0972760DOI10.1016/0001-8708(88)90027-8
  3. Representations, resolutions and intertwining numbers, In: Communications in Algebra, Springer-Verlag, Berlin-New York, 1989, pp. 1–19. (1989) MR1015510
  4. Resolutions and intertwining numbers, In: Proceedings of a Micro-program, June 15–July 2, 1987, Springer-Verlag, New York. 
  5. 10.1016/0001-8708(82)90039-1, Adv. Math. 44 (1982), 207–278. (1982) MR0658729DOI10.1016/0001-8708(82)90039-1
  6. 10.1006/jabr.1999.7986, J.  Algebra 230 (2000), 5–23. (2000) MR1774756DOI10.1006/jabr.1999.7986
  7. 10.1007/BF00053299, Acta Applicandae Mathematicae 21 (1990), 247–261. (1990) MR1085780DOI10.1007/BF00053299
  8. 10.1006/jabr.1996.0235, J.  Algebra 183 (1996), 605–635. (1996) MR1399042DOI10.1006/jabr.1996.0235
  9. 10.1016/S0001-8708(79)80004-3, Adv. Math. 33 (1979), 161–191. (1979) Zbl0425.20011MR0544848DOI10.1016/S0001-8708(79)80004-3
  10. On the modular representation of the general linear and symmetric groups, Math.  Z. 136 (1974), . (1974) MR0354887
  11. On homomorphism between Weyl modules and Specht modules, Math. Proc. Cambridge Philos. Soc. 87 (1980), . (1980) MR0556922
  12. 10.1006/jabr.1995.1031, J.  Algebra 171 (1995), 631–653. (1995) MR1315916DOI10.1006/jabr.1995.1031
  13. Representation Theory. A First Course, Springer-Verlag, New York, 1991. (1991) MR1153249
  14. 10.1006/aima.1993.1006, Adv. Math. 97 (1993), 191–230. (1993) MR1201843DOI10.1006/aima.1993.1006
  15. Polynomial Representation of  G L n . Lectures Notes in Mathematics, No. 830, Springer-Verlag, Berlin, 1980. (1980) 
  16. Basic Algebra  II, W. H. Freeman and Company, , 1980. (1980) Zbl0441.16001MR0571884
  17. 10.1006/jabr.1999.8042, J.  Algebra 224 (2000), 248–262. (2000) MR1739579DOI10.1006/jabr.1999.8042
  18. 10.1006/aima.1997.1700, Adv. Math. 134 (1998), 328–366. (1998) Zbl0911.14024MR1617793DOI10.1006/aima.1997.1700
  19. 10.1016/0021-8693(88)90197-4, J.  Algebra 116 (1988), 143–154. (1988) MR0944151DOI10.1016/0021-8693(88)90197-4
  20. 10.1006/jabr.1997.7164, J.  Algebra 203 (1998), 91–124. (1998) MR1620713DOI10.1006/jabr.1997.7164
  21. 10.1006/jabr.1995.1136, J.  Algebra 174 (1995), 489–522. (1995) MR1334221DOI10.1006/jabr.1995.1136
  22. 10.1080/03081088808817884, Linear Multilinear Algebra 23 (1988), 305–323. (1988) MR1007014DOI10.1080/03081088808817884

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.