Intertwining numbers; the -rowed shapes
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 1, page 53-65
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKo, Hyoung J., and Lee, Kyoung J.. "Intertwining numbers; the $n$-rowed shapes." Czechoslovak Mathematical Journal 57.1 (2007): 53-65. <http://eudml.org/doc/31112>.
@article{Ko2007,
abstract = {A fairly old problem in modular representation theory is to determine the vanishing behavior of the $\mathop \{\mathrm \{H\}om\}\nolimits $ groups and higher $\mathop \{\mathrm \{E\}xt\}\nolimits $ groups of Weyl modules and to compute the dimension of the $\mathbb \{Z\} /(p)$-vector space $\mathop \{\mathrm \{H\}om\}\nolimits _\{\bar\{A\}_r\}(\bar\{K\}_\lambda ,\bar\{K\}_\mu )$ for any partitions $\lambda $, $\mu $ of $r$, which is the intertwining number. K. Akin, D. A. Buchsbaum, and D. Flores solved this problem in the cases of partitions of length two and three. In this paper, we describe the vanishing behavior of the groups $\mathop \{\mathrm \{H\}om\}\nolimits _\{\bar\{A\}_r\}(\bar\{K\}_\lambda ,\bar\{K\}_\mu )$ and provide a new formula for the intertwining number for any $n$-rowed partition.},
author = {Ko, Hyoung J., Lee, Kyoung J.},
journal = {Czechoslovak Mathematical Journal},
keywords = {representation theory; intertwining number; Weyl module; $\mathop \{\mathrm \{E\}xt\}\nolimits $ group; partition; modular representations; intertwining numbers; Weyl modules},
language = {eng},
number = {1},
pages = {53-65},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Intertwining numbers; the $n$-rowed shapes},
url = {http://eudml.org/doc/31112},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Ko, Hyoung J.
AU - Lee, Kyoung J.
TI - Intertwining numbers; the $n$-rowed shapes
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 53
EP - 65
AB - A fairly old problem in modular representation theory is to determine the vanishing behavior of the $\mathop {\mathrm {H}om}\nolimits $ groups and higher $\mathop {\mathrm {E}xt}\nolimits $ groups of Weyl modules and to compute the dimension of the $\mathbb {Z} /(p)$-vector space $\mathop {\mathrm {H}om}\nolimits _{\bar{A}_r}(\bar{K}_\lambda ,\bar{K}_\mu )$ for any partitions $\lambda $, $\mu $ of $r$, which is the intertwining number. K. Akin, D. A. Buchsbaum, and D. Flores solved this problem in the cases of partitions of length two and three. In this paper, we describe the vanishing behavior of the groups $\mathop {\mathrm {H}om}\nolimits _{\bar{A}_r}(\bar{K}_\lambda ,\bar{K}_\mu )$ and provide a new formula for the intertwining number for any $n$-rowed partition.
LA - eng
KW - representation theory; intertwining number; Weyl module; $\mathop {\mathrm {E}xt}\nolimits $ group; partition; modular representations; intertwining numbers; Weyl modules
UR - http://eudml.org/doc/31112
ER -
References
top- 10.1016/0001-8708(85)90115-X, Adv. Math. 58 (1985), 149–200. (1985) MR0814749DOI10.1016/0001-8708(85)90115-X
- 10.1016/0001-8708(88)90027-8, Adv. Math. 72 (1988), 171–210. (1988) MR0972760DOI10.1016/0001-8708(88)90027-8
- Representations, resolutions and intertwining numbers, In: Communications in Algebra, Springer-Verlag, Berlin-New York, 1989, pp. 1–19. (1989) MR1015510
- Resolutions and intertwining numbers, In: Proceedings of a Micro-program, June 15–July 2, 1987, Springer-Verlag, New York.
- 10.1016/0001-8708(82)90039-1, Adv. Math. 44 (1982), 207–278. (1982) MR0658729DOI10.1016/0001-8708(82)90039-1
- 10.1006/jabr.1999.7986, J. Algebra 230 (2000), 5–23. (2000) MR1774756DOI10.1006/jabr.1999.7986
- 10.1007/BF00053299, Acta Applicandae Mathematicae 21 (1990), 247–261. (1990) MR1085780DOI10.1007/BF00053299
- 10.1006/jabr.1996.0235, J. Algebra 183 (1996), 605–635. (1996) MR1399042DOI10.1006/jabr.1996.0235
- 10.1016/S0001-8708(79)80004-3, Adv. Math. 33 (1979), 161–191. (1979) Zbl0425.20011MR0544848DOI10.1016/S0001-8708(79)80004-3
- On the modular representation of the general linear and symmetric groups, Math. Z. 136 (1974), . (1974) MR0354887
- On homomorphism between Weyl modules and Specht modules, Math. Proc. Cambridge Philos. Soc. 87 (1980), . (1980) MR0556922
- 10.1006/jabr.1995.1031, J. Algebra 171 (1995), 631–653. (1995) MR1315916DOI10.1006/jabr.1995.1031
- Representation Theory. A First Course, Springer-Verlag, New York, 1991. (1991) MR1153249
- 10.1006/aima.1993.1006, Adv. Math. 97 (1993), 191–230. (1993) MR1201843DOI10.1006/aima.1993.1006
- Polynomial Representation of . Lectures Notes in Mathematics, No. 830, Springer-Verlag, Berlin, 1980. (1980)
- Basic Algebra II, W. H. Freeman and Company, , 1980. (1980) Zbl0441.16001MR0571884
- 10.1006/jabr.1999.8042, J. Algebra 224 (2000), 248–262. (2000) MR1739579DOI10.1006/jabr.1999.8042
- 10.1006/aima.1997.1700, Adv. Math. 134 (1998), 328–366. (1998) Zbl0911.14024MR1617793DOI10.1006/aima.1997.1700
- 10.1016/0021-8693(88)90197-4, J. Algebra 116 (1988), 143–154. (1988) MR0944151DOI10.1016/0021-8693(88)90197-4
- 10.1006/jabr.1997.7164, J. Algebra 203 (1998), 91–124. (1998) MR1620713DOI10.1006/jabr.1997.7164
- 10.1006/jabr.1995.1136, J. Algebra 174 (1995), 489–522. (1995) MR1334221DOI10.1006/jabr.1995.1136
- 10.1080/03081088808817884, Linear Multilinear Algebra 23 (1988), 305–323. (1988) MR1007014DOI10.1080/03081088808817884
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.