Bernstein’s analyticity theorem for quantum differences

Tord Sjödin

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 1, page 67-73
  • ISSN: 0011-4642

Abstract

top
We consider real valued functions defined on a subinterval of the positive real axis and prove that if all of ’s quantum differences are nonnegative then has a power series representation on . Further, if the quantum differences have fixed sign on then is analytic on .

How to cite

top

Sjödin, Tord. "Bernstein’s analyticity theorem for quantum differences." Czechoslovak Mathematical Journal 57.1 (2007): 67-73. <http://eudml.org/doc/31113>.

@article{Sjödin2007,
abstract = {We consider real valued functions $f$ defined on a subinterval $I$ of the positive real axis and prove that if all of $f$’s quantum differences are nonnegative then $f$ has a power series representation on $I$. Further, if the quantum differences have fixed sign on $I$ then $f$ is analytic on $I$.},
author = {Sjödin, Tord},
journal = {Czechoslovak Mathematical Journal},
keywords = {difference; quantum difference; quantum derivative; power series; difference; quantum difference; quantum derivative; power series},
language = {eng},
number = {1},
pages = {67-73},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bernstein’s analyticity theorem for quantum differences},
url = {http://eudml.org/doc/31113},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Sjödin, Tord
TI - Bernstein’s analyticity theorem for quantum differences
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 67
EP - 73
AB - We consider real valued functions $f$ defined on a subinterval $I$ of the positive real axis and prove that if all of $f$’s quantum differences are nonnegative then $f$ has a power series representation on $I$. Further, if the quantum differences have fixed sign on $I$ then $f$ is analytic on $I$.
LA - eng
KW - difference; quantum difference; quantum derivative; power series; difference; quantum difference; quantum derivative; power series
UR - http://eudml.org/doc/31113
ER -

References

top
  1. Leçons sur les propriété extrémales et la meilleure approximation des functions analytiques d’une variable réelle, Gautier-Villars, Paris, 1926. (French) (1926) 
  2. 10.1007/BF02592679, Acta Math. 52 (1928), 1–66. (1928) DOI10.1007/BF02592679
  3. Basic hypergeometric series, Encyclopaedia of Mathematics and its Applications 34, Cambridge University Press, Cambridge, 1990. (1990) MR1052153
  4. 10.1090/S0002-9947-1969-0265531-3, Trans. Amer. Math. Soc. 135 (1969), 69–93. (1969) MR0232900DOI10.1090/S0002-9947-1969-0265531-3
  5. Quantum Calculus, Springer-Verlag, New York, 2002. (2002) MR1865777
  6. 10.1112/S0024610702003198, J.  London Math. Soc. 66 (2002), 114–130. (2002) MR1911224DOI10.1112/S0024610702003198
  7. 10.1007/s002080050366, Math. Ann. 315 (1999), 251–261. (1999) MR1721798DOI10.1007/s002080050366
  8. On generalized differences and Bernstein’s analyticity theorem, Research report No  9, Department of Mathematics, University of Umeå, Umeå, 2003. (2003) 

NotesEmbed ?

top

You must be logged in to post comments.