0-regularity varying function.
Page 1 Next
S. Aljancic, D. Arandjelovic (1977)
Publications de l'Institut Mathématique [Elektronische Ressource]
Luigi Paganoni, Daniela Rusconi (1983)
Aequationes mathematicae
Zhao, Tie-Hong, Chu, Yu-Ming (2010)
Journal of Inequalities and Applications [electronic only]
Niu, Da-Wei, Cao, Jian, Qi, Feng (2006)
General Mathematics
Heinz Bauer (1986)
Manuscripta mathematica
Zhang, Shi-Qin, Guo, Bai-Ni, Qi, Feng (2009)
Applied Mathematics E-Notes [electronic only]
Chen, Chao-Ping, Li, Xin, Qi, Feng (2006)
General Mathematics
H. W. Pu (1974)
Colloquium Mathematicae
Qi, Feng, Xu, Sen-Lin, Debnath, Lokenath (1999)
International Journal of Mathematics and Mathematical Sciences
Sándor, József (2010)
Acta Universitatis Sapientiae. Mathematica
Clark H. Kimberling (1974)
Aequationes mathematicae
Benguria, Rafael D., Depassier, M.Cristina (2000)
Journal of Inequalities and Applications [electronic only]
Djurčić, Dragan, Torgašev, Aleksandar (2009)
Abstract and Applied Analysis
Niculescu, Constantin P., Vernescu, Andrei (2004)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Alfred Witkowski (2011)
Kragujevac Journal of Mathematics
Hassani, Mehdi (2007)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Tord Sjödin (2007)
Czechoslovak Mathematical Journal
We consider real valued functions defined on a subinterval of the positive real axis and prove that if all of ’s quantum differences are nonnegative then has a power series representation on . Further, if the quantum differences have fixed sign on then is analytic on .
Anwar, M., Pecaric, J. (2011)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Anwar, Matloob, Pecaric, Josip E. (2008)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Zhen-Hang Yang, Jing-Feng Tian (2024)
Czechoslovak Mathematical Journal
Let with , and , and let where We establish the asymptotic expansion where stands for the Bernoulli polynomials. Further, we prove that the functions and are completely monotonic in on for every if and only if and , respectively. This not only unifies the two known results but also yields some new results.
Page 1 Next