On the divisibility of power LCM matrices by power GCD matrices
Jian Rong Zhao; Shaofang Hong; Qunying Liao; Kar-Ping Shum
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 1, page 115-125
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhao, Jian Rong, et al. "On the divisibility of power LCM matrices by power GCD matrices." Czechoslovak Mathematical Journal 57.1 (2007): 115-125. <http://eudml.org/doc/31117>.
@article{Zhao2007,
abstract = {Let $S=\lbrace x_1,\dots ,x_n\rbrace $ be a set of $n$ distinct positive integers and $e\ge 1$ an integer. Denote the $n\times n$ power GCD (resp. power LCM) matrix on $S$ having the $e$-th power of the greatest common divisor $(x_i,x_j)$ (resp. the $e$-th power of the least common multiple $[x_i,x_j]$) as the $(i,j)$-entry of the matrix by $((x_i, x_j)^e)$ (resp. $([x_i, x_j]^e))$. We call the set $S$ an odd gcd closed (resp. odd lcm closed) set if every element in $S$ is an odd number and $(x_i,x_j)\in S$ (resp. $[x_i, x_j]\in S$) for all $1\le i,j \le n$. In studying the divisibility of the power LCM and power GCD matrices, Hong conjectured in 2004 that for any integer $e\ge 1$, the $n\times n$ power GCD matrix $((x_i, x_j)^e)$ defined on an odd-gcd-closed (resp. odd-lcm-closed) set $S$ divides the $n\times n$ power LCM matrix $([x_i, x_j]^e)$ defined on $S$ in the ring $M_n(\{\mathbb \{Z\}\})$ of $n\times n$ matrices over integers. In this paper, we use Hong’s method developed in his previous papers [J. Algebra 218 (1999) 216–228; 281 (2004) 1–14, Acta Arith. 111 (2004), 165–177 and J. Number Theory 113 (2005), 1–9] to investigate Hong’s conjectures. We show that the conjectures of Hong are true for $n\le 3$ but they are both not true for $n\ge 4$.},
author = {Zhao, Jian Rong, Hong, Shaofang, Liao, Qunying, Shum, Kar-Ping},
journal = {Czechoslovak Mathematical Journal},
keywords = {GCD-closed set; LCM-closed set; greatest-type divisor; divisibility; GCD-closed set; LCM-closed set; greatest-type divisor; divisibility},
language = {eng},
number = {1},
pages = {115-125},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the divisibility of power LCM matrices by power GCD matrices},
url = {http://eudml.org/doc/31117},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Zhao, Jian Rong
AU - Hong, Shaofang
AU - Liao, Qunying
AU - Shum, Kar-Ping
TI - On the divisibility of power LCM matrices by power GCD matrices
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 115
EP - 125
AB - Let $S=\lbrace x_1,\dots ,x_n\rbrace $ be a set of $n$ distinct positive integers and $e\ge 1$ an integer. Denote the $n\times n$ power GCD (resp. power LCM) matrix on $S$ having the $e$-th power of the greatest common divisor $(x_i,x_j)$ (resp. the $e$-th power of the least common multiple $[x_i,x_j]$) as the $(i,j)$-entry of the matrix by $((x_i, x_j)^e)$ (resp. $([x_i, x_j]^e))$. We call the set $S$ an odd gcd closed (resp. odd lcm closed) set if every element in $S$ is an odd number and $(x_i,x_j)\in S$ (resp. $[x_i, x_j]\in S$) for all $1\le i,j \le n$. In studying the divisibility of the power LCM and power GCD matrices, Hong conjectured in 2004 that for any integer $e\ge 1$, the $n\times n$ power GCD matrix $((x_i, x_j)^e)$ defined on an odd-gcd-closed (resp. odd-lcm-closed) set $S$ divides the $n\times n$ power LCM matrix $([x_i, x_j]^e)$ defined on $S$ in the ring $M_n({\mathbb {Z}})$ of $n\times n$ matrices over integers. In this paper, we use Hong’s method developed in his previous papers [J. Algebra 218 (1999) 216–228; 281 (2004) 1–14, Acta Arith. 111 (2004), 165–177 and J. Number Theory 113 (2005), 1–9] to investigate Hong’s conjectures. We show that the conjectures of Hong are true for $n\le 3$ but they are both not true for $n\ge 4$.
LA - eng
KW - GCD-closed set; LCM-closed set; greatest-type divisor; divisibility; GCD-closed set; LCM-closed set; greatest-type divisor; divisibility
UR - http://eudml.org/doc/31117
ER -
References
top- 10.2140/pjm.1972.41.281, Pacific J. Math. 41 (1972), 281–293. (1972) Zbl0226.10045MR0311597DOI10.2140/pjm.1972.41.281
- 10.1017/S0004972700017457, Bull. Austral. Math. Soc. 40 (1989), 413–415. (1989) MR1037636DOI10.1017/S0004972700017457
- 10.1016/0024-3795(92)90042-9, Linear Algebra Appl. 174 (1992), 65–74. (1992) MR1176451DOI10.1016/0024-3795(92)90042-9
- 10.1080/03081089308818225, Linear and Multilinear Algebra 34 (1993), 261–267. (1993) MR1304611DOI10.1080/03081089308818225
- 10.1006/jnth.1993.1083, J. Number Theory 45 (1993), 367–376. (1993) MR1247390DOI10.1006/jnth.1993.1083
- Matrices associated with classes of multiplicative functions, Linear Algebra Appl. 216 (1995), 267–275. (1995) MR1319990
- More on divisibility of determinants of LCM Matrices on GCD-closed sets, Southeast Asian Bull. Math. 29 (2005), 887–893. (2005) MR2188728
- 10.1006/jabr.1998.7844, J. Algebra 218 (1999), 216–228. (1999) Zbl1015.11007MR1704684DOI10.1006/jabr.1998.7844
- On the factorization of LCM matrices on gcd-closed sets, Linear Algebra Appl. 345 (2002), 225–233. (2002) Zbl0995.15006MR1883274
- 10.4064/aa101-4-2, Acta Arith. 101 (2002), 321–332. (2002) Zbl0987.11014MR1880046DOI10.4064/aa101-4-2
- 10.4064/cm98-1-9, Colloq. Math. 98 (2003), 113–123. (2003) Zbl1047.11023MR2032075DOI10.4064/cm98-1-9
- 10.4064/aa111-2-5, Acta Arith. 111 (2004), 165–177. (2004) Zbl1047.11022MR2039420DOI10.4064/aa111-2-5
- 10.1016/j.jalgebra.2004.07.026, J. Algebra 281 (2004), 1–14. (2004) Zbl1064.11024MR2091959DOI10.1016/j.jalgebra.2004.07.026
- 10.1016/j.jnt.2005.03.004, J. Number Theory 113 (2005), 1–9. (2005) Zbl1080.11022MR2141756DOI10.1016/j.jnt.2005.03.004
- 10.1017/S0017089504001995, Glasgow Math. J. 46 (2004), 551–569. (2004) MR2094810DOI10.1017/S0017089504001995
- 10.1023/B:CMAJ.0000042382.61841.0c, Czechoslovak Math. J. 54 (2004), 431–443. (2004) MR2059264DOI10.1023/B:CMAJ.0000042382.61841.0c
- 10.4064/aa-84-2-149-154, Acta Arith. 84 (1998), 149–154. (1998) MR1614259DOI10.4064/aa-84-2-149-154
- 10.4153/CMB-1986-020-1, Canad. Math. Bull. 29 (1986), 109–113. (1986) Zbl0588.10005MR0824893DOI10.4153/CMB-1986-020-1
- On the value of a certain arithmetical determinant, Proc. London Math. Soc. 7 (1875–1876), 208–212. (1875–1876)
- 10.2307/2371766, Amer. J. Math. 66 (1944), 564–578. (1944) Zbl0061.24902MR0011497DOI10.2307/2371766
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.