Isometries of generalized M V -algebras

Ján Jakubík

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 1, page 161-171
  • ISSN: 0011-4642

Abstract

top
In this paper we investigate the relations between isometries and direct product decompositions of generalized M V -algebras.

How to cite

top

Jakubík, Ján. "Isometries of generalized $MV$-algebras." Czechoslovak Mathematical Journal 57.1 (2007): 161-171. <http://eudml.org/doc/31121>.

@article{Jakubík2007,
abstract = {In this paper we investigate the relations between isometries and direct product decompositions of generalized $MV$-algebras.},
author = {Jakubík, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized $MV$-algebra; isometry; direct product decomposition; isometry; direct product decomposition},
language = {eng},
number = {1},
pages = {161-171},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Isometries of generalized $MV$-algebras},
url = {http://eudml.org/doc/31121},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Jakubík, Ján
TI - Isometries of generalized $MV$-algebras
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 161
EP - 171
AB - In this paper we investigate the relations between isometries and direct product decompositions of generalized $MV$-algebras.
LA - eng
KW - generalized $MV$-algebra; isometry; direct product decomposition; isometry; direct product decomposition
UR - http://eudml.org/doc/31121
ER -

References

top
  1. Lattice Theory, American Mathematical Society, Providence, 1967. (1967) Zbl0153.02501MR0227053
  2. Algebraic Foundations of Many-valued Reasoning, Kluwer Academic Publishers, Dordrecht, 2000. (2000) MR1786097
  3. Lattice Ordered Groups, Tulane University, 1970. (1970) Zbl0258.06011
  4. 10.1017/S1446788700036806, J. Austral. Math. Soc. 72 (2002), 427–445. (2002) MR1902211DOI10.1017/S1446788700036806
  5. Pseudo M V -algebras: a non-commutative extension of M V -algebras, Proc. Fourth. Internal Symp. Econ. Inf., INFOREC, Bucharest, 1999, pp. 961–968. (1999) 
  6. Pseudo M V -algebras, Multiple-Valued Logic 6 (2001), 95–135. (2001) MR1817439
  7. 10.1007/BF01190425, Alg. Universalis 19 (1984), 142–150. (1984) Zbl0557.06011MR0758313DOI10.1007/BF01190425
  8. Isometries of lattice ordered groups, Czechoslovak Math. J. 30 (1980), 142–152. (1980) MR0565917
  9. 10.1023/A:1021792116546, Czechoslovak Math. J. 52 (2002), 651–663. (2002) MR1923269DOI10.1023/A:1021792116546
  10. Direct product decompositions of pseudo M V -algebras, Archivum math. 37 (2001), 131–142. (2001) MR1838410
  11. Isometries of M V -algebras, Math. Slovaca 54 (2004), 43–48. (2004) MR2074028
  12. 10.1023/A:1021766309509, Czechoslovak Math. J. 52 (2002), 255–273. (2002) MR1905434DOI10.1023/A:1021766309509
  13. Izometries in autometrized lattice ordered groups, Algebra Univ. 8 (1977), 58–64. (1977) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.