The Abelian category of quotients of F -spaces

Belmesnaoui Aqzzouz; R. Nouira

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 1, page 183-190
  • ISSN: 0011-4642

Abstract

top
We construct the category of quotients of -spaces and we show that it is Abelian. This answers a question of L. Waelbroeck from 1990.

How to cite

top

Aqzzouz, Belmesnaoui, and Nouira, R.. "La categorie Abelienne des quotients de type ${\mathcal {L}F}$." Czechoslovak Mathematical Journal 57.1 (2007): 183-190. <http://eudml.org/doc/31123>.

@article{Aqzzouz2007,
author = {Aqzzouz, Belmesnaoui, Nouira, R.},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\mathcal \{L\}\Im $-space; foncteur; catégorie abélienne; -space},
language = {fre},
number = {1},
pages = {183-190},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {La categorie Abelienne des quotients de type $\{\mathcal \{L\}F\}$},
url = {http://eudml.org/doc/31123},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Aqzzouz, Belmesnaoui
AU - Nouira, R.
TI - La categorie Abelienne des quotients de type ${\mathcal {L}F}$
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 183
EP - 190
LA - fre
KW - $\mathcal {L}\Im $-space; foncteur; catégorie abélienne; -space
UR - http://eudml.org/doc/31123
ER -

References

top
  1. Théorie des Bornologies et Applications. Lect. Notes Math. Vol. 213, Springer-Verlag, Berlin-Heidelberg-New York, 1971. (French) (1971) MR0625157
  2. Produits Tensoriels Topologiques et Espaces Nucléaires. Mem. Amer. Math. Soc. No. 16, AMS, Providence, 1966. (1966) MR1609222
  3. Topological Vector Spaces and Algebras. Lect. Notes Math. Vol.  230, Springer-Verlag, Berlin-Heidelberg-New York, 1971. (1971) MR0467234
  4. Quotient Banach Spaces, Spectral theory 8, Banach Cent. Publ., Warsaw, 1982, pp. 553–562. (1982) MR0738315
  5. Holomorphic functions taking their values in a quotient bornological space. Linear operators in function spaces. Proc. 12th  Int. Conf. Oper. Theory, Timisoara, Rommania, 1988, Oper. Theory, Adv. Appl. 43 (1990), 323–335. (1990) MR1090139

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.