The exactness of the projective limit functor on the category of quotients of Frechet spaces
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 1, page 173-181
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAqzzouz, Belmesnaoui. "The exactness of the projective limit functor on the category of quotients of Frechet spaces." Czechoslovak Mathematical Journal 58.1 (2008): 173-181. <http://eudml.org/doc/31206>.
@article{Aqzzouz2008,
abstract = {We give conditions under which the functor projective limit is exact on the category of quotients of Fréchet spaces of L. Waelbroeck [18].},
author = {Aqzzouz, Belmesnaoui},
journal = {Czechoslovak Mathematical Journal},
keywords = {quotient d’espaces de Fréchet; limite projective; quotients of Fréchet spaces; projective limit},
language = {eng},
number = {1},
pages = {173-181},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The exactness of the projective limit functor on the category of quotients of Frechet spaces},
url = {http://eudml.org/doc/31206},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Aqzzouz, Belmesnaoui
TI - The exactness of the projective limit functor on the category of quotients of Frechet spaces
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 1
SP - 173
EP - 181
AB - We give conditions under which the functor projective limit is exact on the category of quotients of Fréchet spaces of L. Waelbroeck [18].
LA - eng
KW - quotient d’espaces de Fréchet; limite projective; quotients of Fréchet spaces; projective limit
UR - http://eudml.org/doc/31206
ER -
References
top- La catégorie abélienne des quotients de type , Czech. Math. J. 57 (2007), 183–190. (2007) MR2309959
- Une application du Lemme de Mittag-Leffler dans la catégorie des quotients d’espaces de Fréchet, (to appear). (to appear)
- 10.1006/jfan.1997.3177, J. Funct. Anal. 153 (1998), 203–248. (1998) MR1614582DOI10.1006/jfan.1997.3177
- Distributional complexes split for positive dimensions, J. Reine Angew. Math. 522 (2000), 63–79. (2000) MR1758575
- Fourier analysis in several complex variables, Pure and Applied Mathematics, Vol. XVII, Wiley-Interscience Publishers A Division of John Wiley & Sons, New York-London-Sydney, 1970. (1970) Zbl0195.10401MR0285849
- Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. (1966). (1966) MR1609222
- The analysis of partial differential operators II, Grundlehren der Mathematischen Wissenschaften Springer-Verlag, Berlin, 1983. (1983)
- The projective limit functor in the category of topological linear spaces, Mat. Sb. (N.S.) 75 117 (1968), 567–603. (Russian) (1968) MR0223851
- Linear differential operators with constant coefficients, Translated from the Russian by A. A. Brown. Die Grundlehren der mathematischen Wissenschaften, Band 168 Springer-Verlag, New York-Berlin, 1970. (1970) Zbl0191.43401MR0264197
- Homological methods in the theory of locally convex spaces, Uspehi Mat. Nauk 26 1 (1971), 3–65. (Russian) (1971) Zbl0247.46070MR0293365
- On a Stein manifold the Dolbeault complex splits in positive dimensions, Mat. Sb. (N.S.) 88 (1972), 287–315. (Russian) (1972) MR0313540
- A criterion for splitness of differential complexes with constant coefficients, Geometric and Algebraic aspects in Several Complex Variables, AMS, 1991, pp. 265-291. (1991) Zbl1112.58304MR1222219
- Spectral theory in quotient Fréchet spaces I, Revue Roumaine de Math. Pures et Appl. 32 (1987), 561–579. (1987) Zbl0665.46058MR0900363
- Spectral theory in quotient Fréchet spaces II, J. Operator theory 21 (1989), 145–202. (1989) Zbl0782.46005MR1002127
- 10.4064/sm-85-2-163-197, Studia Math. 85 (1987), 163–197. (1987) MR0887320DOI10.4064/sm-85-2-163-197
- Quotient Banach spaces, Banach Center Publ. Warsaw (1982), 553–562 and 563–571. (1982) Zbl0492.46014MR0738315
- The category of quotient bornological spaces, J.A. Barroso (ed.), Aspects of Mathematics and its Applications, Elsevier Sciences Publishers B.V. (1986), 873–894. (1986) Zbl0633.46071MR0849594
- Quotient Fréchet spaces, Revue Roumaine de Math. Pures et Appl. 34, n. 2 (1989), 171–179. (1989) Zbl0696.46052MR1005909
- Holomorphic Functions taking their values in a quotient bornological space, Linear operators in function spaces, 12th Int. Conf. Oper. Theory, Timisoara (Rom.) 1988, Oper. Theory, Adv. Appl. 43 (1990), 323–335. (1990) Zbl0711.46010MR1090139
- Derived Functors in Functional Analysis, Lecture Notes in Math. 1810. Springer-Verlag, Berlin, 2003. (2003) Zbl1031.46001MR1977923
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.