Commutative idempotent residuated lattices

David Stanovský

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 1, page 191-200
  • ISSN: 0011-4642

Abstract

top
We investigate the variety of residuated lattices with a commutative and idempotent monoid reduct.

How to cite

top

Stanovský, David. "Commutative idempotent residuated lattices." Czechoslovak Mathematical Journal 57.1 (2007): 191-200. <http://eudml.org/doc/31124>.

@article{Stanovský2007,
abstract = {We investigate the variety of residuated lattices with a commutative and idempotent monoid reduct.},
author = {Stanovský, David},
journal = {Czechoslovak Mathematical Journal},
keywords = {residuated lattice; semilattice; finitely based variety; minimal variety; residuated lattice; semilattice; finitely based variety; minimal variety},
language = {eng},
number = {1},
pages = {191-200},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Commutative idempotent residuated lattices},
url = {http://eudml.org/doc/31124},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Stanovský, David
TI - Commutative idempotent residuated lattices
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 191
EP - 200
AB - We investigate the variety of residuated lattices with a commutative and idempotent monoid reduct.
LA - eng
KW - residuated lattice; semilattice; finitely based variety; minimal variety; residuated lattice; semilattice; finitely based variety; minimal variety
UR - http://eudml.org/doc/31124
ER -

References

top
  1. 10.1007/s00012-003-1822-4, Algebra Universalis 50 (2003), 83–106. (2003) MR2026830DOI10.1007/s00012-003-1822-4
  2. 10.1007/s00012-002-8180-5, Algebra Universalis 47 (2002), 145–151. (2002) MR1916612DOI10.1007/s00012-002-8180-5
  3. A Course in Universal Algebra. GTM  78, Springer-Verlag, New York-Heidelberg-Berlin, 1981. (1981) MR0648287
  4. 10.1142/S0218196703001511, Internat. J.  Algebra Comput. 13 (2003), 437–461. (2003) MR2022118DOI10.1142/S0218196703001511
  5. 10.1090/S0002-9947-1939-1501995-3, Trans. Amer. Math. Soc. 45 (1939), 335–354. (1939) MR1501995DOI10.1090/S0002-9947-1939-1501995-3
  6. 10.1007/s00012-004-1870-4, Algebra Universalis 52 (2004), 215–239. (2004) Zbl1082.06011MR2161651DOI10.1007/s00012-004-1870-4
  7. 10.1023/B:STUD.0000032086.42963.7c, Studia Logica 76 (2004), 227–240. (2004) Zbl1068.06007MR2072984DOI10.1023/B:STUD.0000032086.42963.7c
  8. Varieties of residuated lattices, PhD. Thesis, Vanderbilt University, 2003. (2003) MR2704503
  9. 10.1142/S0218196702001048, Internat. J.  Algebra Comput. 12 (2002), 509–524. (2002) MR1919685DOI10.1142/S0218196702001048
  10. A survey of residuated lattices, In: Ordered Algebraic Structures, J.  Martinez (ed.), Kluwer Academic Publishers, Dordrecht, 2002, pp. 19–56. (2002) MR2083033
  11. 10.7146/math.scand.a-10984, Math. Scand. 27 (1970), 24–38. (1970) Zbl0307.08001MR0274353DOI10.7146/math.scand.a-10984
  12. Algebras, Lattices, Varieties, Vol  I, Wadsworth & Brooks/Cole, Monterey, 1987. (1987) MR0883644

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.