Spaces with large relative extent

Yan-Kui Song

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 1, page 387-394
  • ISSN: 0011-4642

Abstract

top
In this paper, we prove the following statements: (1) For every regular uncountable cardinal κ , there exist a Tychonoff space X and Y a subspace of X such that Y is both relatively absolute star-Lindelöf and relative property (a) in X and e ( Y , X ) κ , but Y is not strongly relative star-Lindelöf in X and X is not star-Lindelöf. (2) There exist a Tychonoff space X and a subspace Y of X such that Y is strongly relative star-Lindelöf in X (hence, relative star-Lindelöf), but Y is not absolutely relative star-Lindelöf in X .

How to cite

top

Song, Yan-Kui. "Spaces with large relative extent." Czechoslovak Mathematical Journal 57.1 (2007): 387-394. <http://eudml.org/doc/31136>.

@article{Song2007,
abstract = {In this paper, we prove the following statements: (1) For every regular uncountable cardinal $\kappa $, there exist a Tychonoff space $X$ and $Y$ a subspace of $X$ such that $Y$ is both relatively absolute star-Lindelöf and relative property (a) in $X$ and $e(Y,X) \ge \kappa $, but $Y$ is not strongly relative star-Lindelöf in $X$ and $X$ is not star-Lindelöf. (2) There exist a Tychonoff space $X$ and a subspace $Y$ of $X$ such that $Y$ is strongly relative star-Lindelöf in $X$ (hence, relative star-Lindelöf), but $Y$ is not absolutely relative star-Lindelöf in $X$.},
author = {Song, Yan-Kui},
journal = {Czechoslovak Mathematical Journal},
keywords = {relative topological property; Lindelöf; star-Lindelöf; relative extent; relative property (a); relative topological property; Lindelöf; star-Lindelöf; relative extent},
language = {eng},
number = {1},
pages = {387-394},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Spaces with large relative extent},
url = {http://eudml.org/doc/31136},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Song, Yan-Kui
TI - Spaces with large relative extent
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 387
EP - 394
AB - In this paper, we prove the following statements: (1) For every regular uncountable cardinal $\kappa $, there exist a Tychonoff space $X$ and $Y$ a subspace of $X$ such that $Y$ is both relatively absolute star-Lindelöf and relative property (a) in $X$ and $e(Y,X) \ge \kappa $, but $Y$ is not strongly relative star-Lindelöf in $X$ and $X$ is not star-Lindelöf. (2) There exist a Tychonoff space $X$ and a subspace $Y$ of $X$ such that $Y$ is strongly relative star-Lindelöf in $X$ (hence, relative star-Lindelöf), but $Y$ is not absolutely relative star-Lindelöf in $X$.
LA - eng
KW - relative topological property; Lindelöf; star-Lindelöf; relative extent; relative property (a); relative topological property; Lindelöf; star-Lindelöf; relative extent
UR - http://eudml.org/doc/31136
ER -

References

top
  1. The origin of the theory of relative topological properties, General Topology, Space and Mappings, Moskov. Gos. Univ., Moscow, 1989, pp. 3–48. (Russian) (1989) MR1095304
  2. A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolinae 36 (1995), 303–325. (1995) MR1357532
  3. 10.1016/0166-8641(95)00086-0, Topology Appl. 70 (1996), 87–99. (1996) MR1397067DOI10.1016/0166-8641(95)00086-0
  4. Star-Lindelöf and absolutely star-Lindelöf spaces, Q and A in General Topology 14 (1998), 79–104. (1998) Zbl0931.54019MR1642032
  5. 10.1016/0166-8641(91)90077-Y, Topology Appl. 39 (1991), 71–103. (1991) MR1103993DOI10.1016/0166-8641(91)90077-Y
  6. A class of topological spaces containing Lindelöf spaces and separable spaces, Chin. Ann. Math. Ser.  A 4 (1983), 571–575. (1983) MR0742178
  7. General Topology. Rev. and compl. ed, Heldermann-Verlag, Berlin, 1989. (1989) Zbl0684.54001MR1039321
  8. Some relative topological properties, Mat. Ves. 44 (1992), 33–44. (1992) Zbl0795.54002MR1201265
  9. 10.1016/0166-8641(94)90074-4, Topology Appl. 58 (1994), 81–92. (1994) Zbl0801.54021MR1280711DOI10.1016/0166-8641(94)90074-4
  10. A survey on star covering properties, Topology Atlas, preprint No.  330 (1998). (1998) 
  11. A survey on star covering properties  II, Topology Atlas, preprint No.  431 (2000). (2000) 
  12. Some questions on property  (a), Quest. Answers Gen. Topology 15 (1997), 103–111. (1997) Zbl1002.54016MR1472172
  13. 10.1016/S0166-8641(97)00265-4, Topology Appl. 93 (1999), 121–129. (1999) MR1680839DOI10.1016/S0166-8641(97)00265-4
  14. 10.1016/S0166-8641(01)00061-X, Topology Appl. 119 (2002), 229–232. (2002) Zbl0986.54003MR1886097DOI10.1016/S0166-8641(01)00061-X
  15. On space in countable web, Preprint. 
  16. Spaces with large extent and large star-Lindelöf number, Houston. J.  Math. 29 (2003), 345–352. (2003) Zbl1064.54006MR1987579
  17. 10.21099/tkbjm/1496164294, Tsukuba J.  Math. 25 (2001), 371–382. (2001) Zbl1011.54020MR1869769DOI10.21099/tkbjm/1496164294
  18. On relative star-Lindelöf spaces, N. Z. Math 34 (2005), 159–163. (2005) Zbl1099.54022MR2195833
  19. Spaces in countable web, Houston.  J. Math. 25 (1999), 327–335. (1999) MR1697629
  20. Absolute countable compactness and property  (a), Proceedings of the Eighth Prague Topological symposium, August  1996, 1996, pp. 18–24. (1996) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.