Spaces with large relative extent
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 1, page 387-394
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSong, Yan-Kui. "Spaces with large relative extent." Czechoslovak Mathematical Journal 57.1 (2007): 387-394. <http://eudml.org/doc/31136>.
@article{Song2007,
abstract = {In this paper, we prove the following statements: (1) For every regular uncountable cardinal $\kappa $, there exist a Tychonoff space $X$ and $Y$ a subspace of $X$ such that $Y$ is both relatively absolute star-Lindelöf and relative property (a) in $X$ and $e(Y,X) \ge \kappa $, but $Y$ is not strongly relative star-Lindelöf in $X$ and $X$ is not star-Lindelöf. (2) There exist a Tychonoff space $X$ and a subspace $Y$ of $X$ such that $Y$ is strongly relative star-Lindelöf in $X$ (hence, relative star-Lindelöf), but $Y$ is not absolutely relative star-Lindelöf in $X$.},
author = {Song, Yan-Kui},
journal = {Czechoslovak Mathematical Journal},
keywords = {relative topological property; Lindelöf; star-Lindelöf; relative extent; relative property (a); relative topological property; Lindelöf; star-Lindelöf; relative extent},
language = {eng},
number = {1},
pages = {387-394},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Spaces with large relative extent},
url = {http://eudml.org/doc/31136},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Song, Yan-Kui
TI - Spaces with large relative extent
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 387
EP - 394
AB - In this paper, we prove the following statements: (1) For every regular uncountable cardinal $\kappa $, there exist a Tychonoff space $X$ and $Y$ a subspace of $X$ such that $Y$ is both relatively absolute star-Lindelöf and relative property (a) in $X$ and $e(Y,X) \ge \kappa $, but $Y$ is not strongly relative star-Lindelöf in $X$ and $X$ is not star-Lindelöf. (2) There exist a Tychonoff space $X$ and a subspace $Y$ of $X$ such that $Y$ is strongly relative star-Lindelöf in $X$ (hence, relative star-Lindelöf), but $Y$ is not absolutely relative star-Lindelöf in $X$.
LA - eng
KW - relative topological property; Lindelöf; star-Lindelöf; relative extent; relative property (a); relative topological property; Lindelöf; star-Lindelöf; relative extent
UR - http://eudml.org/doc/31136
ER -
References
top- The origin of the theory of relative topological properties, General Topology, Space and Mappings, Moskov. Gos. Univ., Moscow, 1989, pp. 3–48. (Russian) (1989) MR1095304
- A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolinae 36 (1995), 303–325. (1995) MR1357532
- 10.1016/0166-8641(95)00086-0, Topology Appl. 70 (1996), 87–99. (1996) MR1397067DOI10.1016/0166-8641(95)00086-0
- Star-Lindelöf and absolutely star-Lindelöf spaces, Q and A in General Topology 14 (1998), 79–104. (1998) Zbl0931.54019MR1642032
- 10.1016/0166-8641(91)90077-Y, Topology Appl. 39 (1991), 71–103. (1991) MR1103993DOI10.1016/0166-8641(91)90077-Y
- A class of topological spaces containing Lindelöf spaces and separable spaces, Chin. Ann. Math. Ser. A 4 (1983), 571–575. (1983) MR0742178
- General Topology. Rev. and compl. ed, Heldermann-Verlag, Berlin, 1989. (1989) Zbl0684.54001MR1039321
- Some relative topological properties, Mat. Ves. 44 (1992), 33–44. (1992) Zbl0795.54002MR1201265
- 10.1016/0166-8641(94)90074-4, Topology Appl. 58 (1994), 81–92. (1994) Zbl0801.54021MR1280711DOI10.1016/0166-8641(94)90074-4
- A survey on star covering properties, Topology Atlas, preprint No. 330 (1998). (1998)
- A survey on star covering properties II, Topology Atlas, preprint No. 431 (2000). (2000)
- Some questions on property (a), Quest. Answers Gen. Topology 15 (1997), 103–111. (1997) Zbl1002.54016MR1472172
- 10.1016/S0166-8641(97)00265-4, Topology Appl. 93 (1999), 121–129. (1999) MR1680839DOI10.1016/S0166-8641(97)00265-4
- 10.1016/S0166-8641(01)00061-X, Topology Appl. 119 (2002), 229–232. (2002) Zbl0986.54003MR1886097DOI10.1016/S0166-8641(01)00061-X
- On space in countable web, Preprint.
- Spaces with large extent and large star-Lindelöf number, Houston. J. Math. 29 (2003), 345–352. (2003) Zbl1064.54006MR1987579
- 10.21099/tkbjm/1496164294, Tsukuba J. Math. 25 (2001), 371–382. (2001) Zbl1011.54020MR1869769DOI10.21099/tkbjm/1496164294
- On relative star-Lindelöf spaces, N. Z. Math 34 (2005), 159–163. (2005) Zbl1099.54022MR2195833
- Spaces in countable web, Houston. J. Math. 25 (1999), 327–335. (1999) MR1697629
- Absolute countable compactness and property (a), Proceedings of the Eighth Prague Topological symposium, August 1996, 1996, pp. 18–24. (1996)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.