A generic theorem in the theory of cardinal invariants of topological spaces

Aleksander V. Arhangel'skii

Commentationes Mathematicae Universitatis Carolinae (1995)

  • Volume: 36, Issue: 2, page 303-325
  • ISSN: 0010-2628

Abstract

top
Relative versions of many important theorems on cardinal invariants of topological spaces are formulated and proved on the basis of a general technical result, which provides an algorithm for such proofs. New relative cardinal invariants are defined, and open problems are discussed.

How to cite

top

Arhangel'skii, Aleksander V.. "A generic theorem in the theory of cardinal invariants of topological spaces." Commentationes Mathematicae Universitatis Carolinae 36.2 (1995): 303-325. <http://eudml.org/doc/247762>.

@article{Arhangelskii1995,
abstract = {Relative versions of many important theorems on cardinal invariants of topological spaces are formulated and proved on the basis of a general technical result, which provides an algorithm for such proofs. New relative cardinal invariants are defined, and open problems are discussed.},
author = {Arhangel'skii, Aleksander V.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Lindelöf space; Souslin number; spread; extent; pseudocharacter; relative cardinal invariant; spread; relative cardinal invariants; quasi-Lindelöf spaces},
language = {eng},
number = {2},
pages = {303-325},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A generic theorem in the theory of cardinal invariants of topological spaces},
url = {http://eudml.org/doc/247762},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Arhangel'skii, Aleksander V.
TI - A generic theorem in the theory of cardinal invariants of topological spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 2
SP - 303
EP - 325
AB - Relative versions of many important theorems on cardinal invariants of topological spaces are formulated and proved on the basis of a general technical result, which provides an algorithm for such proofs. New relative cardinal invariants are defined, and open problems are discussed.
LA - eng
KW - Lindelöf space; Souslin number; spread; extent; pseudocharacter; relative cardinal invariant; spread; relative cardinal invariants; quasi-Lindelöf spaces
UR - http://eudml.org/doc/247762
ER -

References

top
  1. Arhangel'skii A.V., On the cardinality of bicompacta satisfying the first axiom of countability, Soviet Math. Dokl. 10 (1969), 951-955. (1969) MR0119188
  2. Arhangel'skii A.V., Structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys 33 (1978), 33-96. (1978) MR0526012
  3. Arhangel'skii A.V., Theorems on the cardinality of families of sets in compact Hausdorff spaces, Soviet Math. Dokl. 17:1 (1976), 213-217. (1976) MR0405327
  4. Arhangel'skii A.V., A theorem on cardinality, Russ. Math. Surveys 34:4 (1979), 153-154. (1979) MR0548421
  5. Arhangel'skii A.V., Hamdi M.M. Genedi, The beginnings of the Theory of Relative Topological Properties, p. 3-48 in: General Topology. Spaces and Functions, Izd. MGU, Moscow, 1989 (in Russian). 
  6. Arhangel'skii A.V., C p -Theory, in: M. Hušek and J. van Mill, Editors, Chapter 1, p. 1-56, North-Holland, Amsterdam, 1992. Zbl0932.54015
  7. Arhangel'skii V.A., Relative compactness and networks, Master Thesis, Moscow State University, (1994), Preprint, p. 1-4, (in Russian). 
  8. Bell M., Ginsburg J., Woods G., Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. 79 (1978), 37-45. (1978) MR0526665
  9. Burke D.K., Hodel R.E., The number of compact subsets of a topological space, Proc. Amer. Math. Soc. 58 (1976), 363-368. (1976) Zbl0335.54005MR0418014
  10. Charlesworth A., On the cardinality of a topological space, Proc. Amer. Math. Soc. 66 (1977), 138-142. (1977) Zbl0364.54004MR0451184
  11. Corson H.H., Michael E., Metrization of certain countable unions, Illinois J. Math. 8 (1964), 351-360. (1964) MR0170324
  12. Dow A., Vermeer J., An example concerning the property of a space being Lindelöf in another, Topology and Appl. 51 (1993), 255-260. (1993) Zbl0827.54014MR1237391
  13. Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. Zbl0684.54001MR1039321
  14. Fedorchuk V.V., On the cardinality of hereditarily separable compact Hausdorff spaces, Soviet Math. Dokl. 16 (1975), 651-655. (1975) Zbl0331.54029
  15. Ginsburg J., Woods G., A cardinal inequality for topological spaces involving closed discrete sets, Proc. Amer. Math. Soc. 64 (1977), 357-360. (1977) Zbl0398.54002MR0461407
  16. Grothendieck A., Criteres de compacticite dans les espaces fonctionnels genereaux, Amer. J. Math. 74 (1952), 168-186. (1952) MR0047313
  17. Gryzlow A.A., Two theorems on the cardinality of topological spaces, Soviet Math. Dokl. 21 (1980), 506-509. (1980) 
  18. Hajnal A., Juhász I., Discrete subspaces of topological spaces, Indag. Math. 29 (1967), 343-356. (1967) MR0229195
  19. Hodel R.E., A technique for proving inequalities in cardinal functions, Topology Proc. 4 (1979), 115-120. (1979) MR0583694
  20. Hodel R.E., Cardinal Functions, 1, in: Handbook of Set-theoretic Topology, Editors: Kunen K. and J.E. Vaughan, Chapter 1, 1-62, North-Holland, Amsterdam, 1984. MR0776620
  21. Hodel R.E., Combinatorial set theory and cardinal function inequalities, Proc. Amer. Math. Soc. 111:2 (1991), 567-575. (1991) Zbl0713.54007MR1039531
  22. Mischenko A., Spaces with point countable bases, Soviet Math. Dokl. 3 (1962), 855-858. (1962) 
  23. Pol R., Short proofs of two theorems on cardinality of topological spaces, Bull. Acad. Polon. Sci. 22 (1974), 1245-1249. (1974) Zbl0295.54004MR0383333
  24. Ranchin D.V., On compactness modulo an ideal, Dokl. AN SSSR 202 (1972), 761-764 (in Russian). (1972) MR0296899
  25. Shapirovskij B.E., On discrete subspaces of topological spaces; weight, tightness and Souslin number, Soviet Math. Dokl. 13 (1972), 215-219. (1972) 
  26. Shapirovskij B.E., Canonical sets and character. Density and weight in compact spaces, Soviet Math. Dokl. 15 (1974), 1282-1287. (1974) Zbl0306.54012
  27. Stephenson R.M., Jr., Initially κ -compact and related spaces, in: Handbook of Set-theoretic Topology, Editors: Kunen K. and J.E. Vaughan, Chapter 13, 603-632, North-Holland, Amsterdam, 1984. Zbl0588.54025MR0776632
  28. van Douwen Eric K., Applications of maximal topologies, Topol. and Appl. 51:2 (1993), 125-139. (1993) Zbl0845.54028MR1229708

Citations in EuDML Documents

top
  1. Winfried Just, The sizes of relatively compact T 1 -spaces
  2. Maddalena Bonanzinga, Maria Cuzzupé, Bruno Pansera, On the cardinality of n-Urysohn and n-Hausdorff spaces
  3. Aleksander V. Arhangel'skii, Raushan Z. Buzyakova, Convergence in compacta and linear Lindelöfness
  4. Yan-Kui Song, Spaces with large relative extent
  5. Alejandro Ramírez-Páramo, Noé Trinidad Tapia-Bonilla, A generalization of a generic theorem in the theory of cardinal invariants of topological spaces
  6. Yankui Song, On relatively almost Lindelöf subsets
  7. Liang-Xue Peng, A note on transitively D -spaces

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.