A generic theorem in the theory of cardinal invariants of topological spaces
Commentationes Mathematicae Universitatis Carolinae (1995)
- Volume: 36, Issue: 2, page 303-325
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topArhangel'skii, Aleksander V.. "A generic theorem in the theory of cardinal invariants of topological spaces." Commentationes Mathematicae Universitatis Carolinae 36.2 (1995): 303-325. <http://eudml.org/doc/247762>.
@article{Arhangelskii1995,
abstract = {Relative versions of many important theorems on cardinal invariants of topological spaces are formulated and proved on the basis of a general technical result, which provides an algorithm for such proofs. New relative cardinal invariants are defined, and open problems are discussed.},
author = {Arhangel'skii, Aleksander V.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Lindelöf space; Souslin number; spread; extent; pseudocharacter; relative cardinal invariant; spread; relative cardinal invariants; quasi-Lindelöf spaces},
language = {eng},
number = {2},
pages = {303-325},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A generic theorem in the theory of cardinal invariants of topological spaces},
url = {http://eudml.org/doc/247762},
volume = {36},
year = {1995},
}
TY - JOUR
AU - Arhangel'skii, Aleksander V.
TI - A generic theorem in the theory of cardinal invariants of topological spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 2
SP - 303
EP - 325
AB - Relative versions of many important theorems on cardinal invariants of topological spaces are formulated and proved on the basis of a general technical result, which provides an algorithm for such proofs. New relative cardinal invariants are defined, and open problems are discussed.
LA - eng
KW - Lindelöf space; Souslin number; spread; extent; pseudocharacter; relative cardinal invariant; spread; relative cardinal invariants; quasi-Lindelöf spaces
UR - http://eudml.org/doc/247762
ER -
References
top- Arhangel'skii A.V., On the cardinality of bicompacta satisfying the first axiom of countability, Soviet Math. Dokl. 10 (1969), 951-955. (1969) MR0119188
- Arhangel'skii A.V., Structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys 33 (1978), 33-96. (1978) MR0526012
- Arhangel'skii A.V., Theorems on the cardinality of families of sets in compact Hausdorff spaces, Soviet Math. Dokl. 17:1 (1976), 213-217. (1976) MR0405327
- Arhangel'skii A.V., A theorem on cardinality, Russ. Math. Surveys 34:4 (1979), 153-154. (1979) MR0548421
- Arhangel'skii A.V., Hamdi M.M. Genedi, The beginnings of the Theory of Relative Topological Properties, p. 3-48 in: General Topology. Spaces and Functions, Izd. MGU, Moscow, 1989 (in Russian).
- Arhangel'skii A.V., -Theory, in: M. Hušek and J. van Mill, Editors, Chapter 1, p. 1-56, North-Holland, Amsterdam, 1992. Zbl0932.54015
- Arhangel'skii V.A., Relative compactness and networks, Master Thesis, Moscow State University, (1994), Preprint, p. 1-4, (in Russian).
- Bell M., Ginsburg J., Woods G., Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. 79 (1978), 37-45. (1978) MR0526665
- Burke D.K., Hodel R.E., The number of compact subsets of a topological space, Proc. Amer. Math. Soc. 58 (1976), 363-368. (1976) Zbl0335.54005MR0418014
- Charlesworth A., On the cardinality of a topological space, Proc. Amer. Math. Soc. 66 (1977), 138-142. (1977) Zbl0364.54004MR0451184
- Corson H.H., Michael E., Metrization of certain countable unions, Illinois J. Math. 8 (1964), 351-360. (1964) MR0170324
- Dow A., Vermeer J., An example concerning the property of a space being Lindelöf in another, Topology and Appl. 51 (1993), 255-260. (1993) Zbl0827.54014MR1237391
- Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. Zbl0684.54001MR1039321
- Fedorchuk V.V., On the cardinality of hereditarily separable compact Hausdorff spaces, Soviet Math. Dokl. 16 (1975), 651-655. (1975) Zbl0331.54029
- Ginsburg J., Woods G., A cardinal inequality for topological spaces involving closed discrete sets, Proc. Amer. Math. Soc. 64 (1977), 357-360. (1977) Zbl0398.54002MR0461407
- Grothendieck A., Criteres de compacticite dans les espaces fonctionnels genereaux, Amer. J. Math. 74 (1952), 168-186. (1952) MR0047313
- Gryzlow A.A., Two theorems on the cardinality of topological spaces, Soviet Math. Dokl. 21 (1980), 506-509. (1980)
- Hajnal A., Juhász I., Discrete subspaces of topological spaces, Indag. Math. 29 (1967), 343-356. (1967) MR0229195
- Hodel R.E., A technique for proving inequalities in cardinal functions, Topology Proc. 4 (1979), 115-120. (1979) MR0583694
- Hodel R.E., Cardinal Functions, 1, in: Handbook of Set-theoretic Topology, Editors: Kunen K. and J.E. Vaughan, Chapter 1, 1-62, North-Holland, Amsterdam, 1984. MR0776620
- Hodel R.E., Combinatorial set theory and cardinal function inequalities, Proc. Amer. Math. Soc. 111:2 (1991), 567-575. (1991) Zbl0713.54007MR1039531
- Mischenko A., Spaces with point countable bases, Soviet Math. Dokl. 3 (1962), 855-858. (1962)
- Pol R., Short proofs of two theorems on cardinality of topological spaces, Bull. Acad. Polon. Sci. 22 (1974), 1245-1249. (1974) Zbl0295.54004MR0383333
- Ranchin D.V., On compactness modulo an ideal, Dokl. AN SSSR 202 (1972), 761-764 (in Russian). (1972) MR0296899
- Shapirovskij B.E., On discrete subspaces of topological spaces; weight, tightness and Souslin number, Soviet Math. Dokl. 13 (1972), 215-219. (1972)
- Shapirovskij B.E., Canonical sets and character. Density and weight in compact spaces, Soviet Math. Dokl. 15 (1974), 1282-1287. (1974) Zbl0306.54012
- Stephenson R.M., Jr., Initially -compact and related spaces, in: Handbook of Set-theoretic Topology, Editors: Kunen K. and J.E. Vaughan, Chapter 13, 603-632, North-Holland, Amsterdam, 1984. Zbl0588.54025MR0776632
- van Douwen Eric K., Applications of maximal topologies, Topol. and Appl. 51:2 (1993), 125-139. (1993) Zbl0845.54028MR1229708
Citations in EuDML Documents
top- Winfried Just, The sizes of relatively compact -spaces
- Maddalena Bonanzinga, Maria Cuzzupé, Bruno Pansera, On the cardinality of n-Urysohn and n-Hausdorff spaces
- Aleksander V. Arhangel'skii, Raushan Z. Buzyakova, Convergence in compacta and linear Lindelöfness
- Yan-Kui Song, Spaces with large relative extent
- Alejandro Ramírez-Páramo, Noé Trinidad Tapia-Bonilla, A generalization of a generic theorem in the theory of cardinal invariants of topological spaces
- Yankui Song, On relatively almost Lindelöf subsets
- Liang-Xue Peng, A note on transitively -spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.