Decomposing complete tripartite graphs into closed trails of arbitrary lengths
Elizabeth J. Billington; Nicholas J. Cavenagh
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 2, page 523-551
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBillington, Elizabeth J., and Cavenagh, Nicholas J.. "Decomposing complete tripartite graphs into closed trails of arbitrary lengths." Czechoslovak Mathematical Journal 57.2 (2007): 523-551. <http://eudml.org/doc/31145>.
@article{Billington2007,
abstract = {The complete tripartite graph $K_\{n,n,n\}$ has $3n^2$ edges. For any collection of positive integers $x_1,x_2,\dots ,x_m$ with $\sum _\{i=1\}^m x_i=3n^2$ and $x_i\ge 3$ for $1\le i\le m$, we exhibit an edge-disjoint decomposition of $K_\{n,n,n\}$ into closed trails (circuits) of lengths $x_1,x_2,\dots ,x_m$.},
author = {Billington, Elizabeth J., Cavenagh, Nicholas J.},
journal = {Czechoslovak Mathematical Journal},
keywords = {cycles; decomposing complete tripartite graphs; cycles; decomposing complete tripartite graphs; edge disjoint decomposition},
language = {eng},
number = {2},
pages = {523-551},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Decomposing complete tripartite graphs into closed trails of arbitrary lengths},
url = {http://eudml.org/doc/31145},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Billington, Elizabeth J.
AU - Cavenagh, Nicholas J.
TI - Decomposing complete tripartite graphs into closed trails of arbitrary lengths
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 2
SP - 523
EP - 551
AB - The complete tripartite graph $K_{n,n,n}$ has $3n^2$ edges. For any collection of positive integers $x_1,x_2,\dots ,x_m$ with $\sum _{i=1}^m x_i=3n^2$ and $x_i\ge 3$ for $1\le i\le m$, we exhibit an edge-disjoint decomposition of $K_{n,n,n}$ into closed trails (circuits) of lengths $x_1,x_2,\dots ,x_m$.
LA - eng
KW - cycles; decomposing complete tripartite graphs; cycles; decomposing complete tripartite graphs; edge disjoint decomposition
UR - http://eudml.org/doc/31145
ER -
References
top- 10.1017/S0963548301004771, Combinatorics, Probability and Computing 10 (2001), 463–499. (2001) Zbl1113.05309MR1869841DOI10.1017/S0963548301004771
- 10.1016/S0095-8956(02)00039-4, J. Combinatorial Theory, Ser. B 88 (2003), 107–118. (2003) Zbl1045.05074MR1973263DOI10.1016/S0095-8956(02)00039-4
- Decomposing complete tripartite graphs into cycles of length and , Discrete Math. 197/198 (1999), 123–135. (1999) MR1674855
- Combinatorial trades: a survey of recent results, Chapter 3 in Designs 2002: Further Computational and Constructive Design Theory (ed. W. D. Wallis), Kluwer Academic Publishers, Boston/Dordrecht/London, 2003, pp. 47–67. (2003) Zbl1056.05014MR2041871
- Decompositions of complete tripartite graphs into -cycles, Australas. J. Combin. 18 (1998), 193–200. (1998) Zbl0924.05051MR1658341
- Further decompositions of complete tripartite graphs into -cycles, Discrete Math. 256 (2002), 55–81. (2002) Zbl1009.05108MR1927056
- On decomposing complete tripartite graphs into -cycles, Australas. J. Combin. 22 (2000), 41–62. (2000) MR1795321
- 10.1007/s003730050003, Graphs and Combinatorics 16 (2000), 49–65. (2000) MR1750460DOI10.1007/s003730050003
- 10.1023/A:1022931710349, Czech. Math. J. 53 (2003), 127–134. (2003) MR1962004DOI10.1023/A:1022931710349
- Decomposition of even graphs into closed trails, Abstract at Grafy ’03, Javorná, Czech Republic.
- The equipartite Oberwolfach problem with uniform tables, J. Combin. Theory, Ser. A 101 (2003), 20–34. (2003) Zbl1015.05074MR1953278
- Decomposition of complete tripartite graphs into -cycles, In: Combinatorics Advances, Kluwer Academic Publishers, Netherlands, 1995, pp. 235–241. (1995) MR1366852
- 10.1016/0095-8956(81)90093-9, J. Combinatorial Theory (Series B) 30 (1981), 75–81. (1981) Zbl0463.05048MR0609596DOI10.1016/0095-8956(81)90093-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.