The ap-Denjoy and ap-Henstock integrals
Jae Myung Park; Jae Jung Oh; Chun-Gil Park; Deuk Ho Lee
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 2, page 689-696
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPark, Jae Myung, et al. "The ap-Denjoy and ap-Henstock integrals." Czechoslovak Mathematical Journal 57.2 (2007): 689-696. <http://eudml.org/doc/31155>.
@article{Park2007,
abstract = {In this paper we define the ap-Denjoy integral and show that the ap-Denjoy integral is equivalent to the ap-Henstock integral and the integrals are equal.},
author = {Park, Jae Myung, Oh, Jae Jung, Park, Chun-Gil, Lee, Deuk Ho},
journal = {Czechoslovak Mathematical Journal},
keywords = {approximate Lusin function; ap-Denjoy integral; ap-Henstock integral; choice; approximate Lusin function; ap-Denjoy integral; ap-Henstock integral; choice},
language = {eng},
number = {2},
pages = {689-696},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The ap-Denjoy and ap-Henstock integrals},
url = {http://eudml.org/doc/31155},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Park, Jae Myung
AU - Oh, Jae Jung
AU - Park, Chun-Gil
AU - Lee, Deuk Ho
TI - The ap-Denjoy and ap-Henstock integrals
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 2
SP - 689
EP - 696
AB - In this paper we define the ap-Denjoy integral and show that the ap-Denjoy integral is equivalent to the ap-Henstock integral and the integrals are equal.
LA - eng
KW - approximate Lusin function; ap-Denjoy integral; ap-Henstock integral; choice; approximate Lusin function; ap-Denjoy integral; ap-Henstock integral; choice
UR - http://eudml.org/doc/31155
ER -
References
top- 10.1017/S1446788700025738, J. Austral. Math. Soc. (Ser. A) 35 (1983), 236–253. (1983) Zbl0533.26006MR0704431DOI10.1017/S1446788700025738
- The descriptive definitions and properties of the AP-integral and their application to the problem of controlled convergence, Real Anal. Exch. 19 (1994), 81–97. (1994) MR1268833
- 10.2307/44152859, Real Anal. Exch. 23 (1997), 329–341. (1997) Zbl0943.26023MR1609917DOI10.2307/44152859
- The Integrals of Lebesgue, Denjoy, Perron and Henstock, Amer. Math. Soc., Providence, 1994. (1994) Zbl0807.26004MR1288751
- On multiplication of Perron integrable functions, Czechoslovak Math. J. 23(98) (1973), 542–566. (1973) Zbl0269.26007MR0335705
- Perron type integration on n-dimensional intervals as an extension of integration of step functions by strong equiconvergence, Czechoslovak Math. J. 46(121) (1996), 1–20. (1996) MR1371683
- On a generalized dominated convergence theorem for the AP integral, Real Anal. Exch. 20 (1995), 77–88. (1995) Zbl0820.26006MR1313672
- 10.2307/44133066, Real Anal. Exch. 18 (1993), 253–260. (1993) Zbl0774.26006MR1205520DOI10.2307/44133066
- On the equivalence of four convergence theorems for the AP-integral, Real Anal. Exch. 19 (1994), 155–164. (1994) Zbl0813.26002MR1268841
- 10.1023/A:1022403232211, Czechoslovak Math. J. 47(122) (1997), 425–430. (1997) Zbl0903.46040MR1461422DOI10.1023/A:1022403232211
- 10.1023/A:1022845929564, Czechoslovak Math. J. 50(125) (2000), 615–625. (2000) Zbl1079.28502MR1777481DOI10.1023/A:1022845929564
- 10.1007/s10587-004-6407-7, Czechoslovak Math. J. 54(129) (2004), 545–557. (2004) MR2086715DOI10.1007/s10587-004-6407-7
- 10.1017/S1446788700016153, J. Austr. Math. Soc. (Ser. A) 20 (1975), 431–448. (1975) Zbl0313.26012MR0393379DOI10.1017/S1446788700016153
- 10.1017/S0004972700022863, Bull. Aust. Math. Soc. 15 (1976), 431–438. (1976) Zbl0333.46025MR0430180DOI10.1017/S0004972700022863
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.