Convergence of ap-Henstock-Kurzweil integral on locally compact spaces

Hemanta Kalita; Ravi P. Agarwal; Bipan Hazarika

Czechoslovak Mathematical Journal (2025)

  • Issue: 1, page 103-121
  • ISSN: 0011-4642

Abstract

top
We introduce an ap-Henstock-Kurzweil type integral with a non-atomic Radon measure and prove the Saks-Henstock type lemma. The monotone convergence theorem, μ ap -Henstock-Kurzweil equi-integrability, and uniformly strong Lusin condition are discussed.

How to cite

top

Kalita, Hemanta, Agarwal, Ravi P., and Hazarika, Bipan. "Convergence of ap-Henstock-Kurzweil integral on locally compact spaces." Czechoslovak Mathematical Journal (2025): 103-121. <http://eudml.org/doc/299910>.

@article{Kalita2025,
abstract = {We introduce an ap-Henstock-Kurzweil type integral with a non-atomic Radon measure and prove the Saks-Henstock type lemma. The monotone convergence theorem, $\mu _\{\rm ap\}$-Henstock-Kurzweil equi-integrability, and uniformly strong Lusin condition are discussed.},
author = {Kalita, Hemanta, Agarwal, Ravi P., Hazarika, Bipan},
journal = {Czechoslovak Mathematical Journal},
keywords = {ap-Henstock-Kurzweil integral; uniformly strong Lusin condition; monotone convergence theorem; $\mu _\{\rm ap\}$-Henstock-Kurzweil equi-integrability; Henstock’s lemma},
language = {eng},
number = {1},
pages = {103-121},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence of ap-Henstock-Kurzweil integral on locally compact spaces},
url = {http://eudml.org/doc/299910},
year = {2025},
}

TY - JOUR
AU - Kalita, Hemanta
AU - Agarwal, Ravi P.
AU - Hazarika, Bipan
TI - Convergence of ap-Henstock-Kurzweil integral on locally compact spaces
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 103
EP - 121
AB - We introduce an ap-Henstock-Kurzweil type integral with a non-atomic Radon measure and prove the Saks-Henstock type lemma. The monotone convergence theorem, $\mu _{\rm ap}$-Henstock-Kurzweil equi-integrability, and uniformly strong Lusin condition are discussed.
LA - eng
KW - ap-Henstock-Kurzweil integral; uniformly strong Lusin condition; monotone convergence theorem; $\mu _{\rm ap}$-Henstock-Kurzweil equi-integrability; Henstock’s lemma
UR - http://eudml.org/doc/299910
ER -

References

top
  1. Bongiorno, D., Corrao, G., 10.14321/realanalexch.40.1.0157, Real Anal. Exch. 40 (2015), 157-178. (2015) Zbl1391.26027MR3365396DOI10.14321/realanalexch.40.1.0157
  2. Bullen, P. S., 10.1017/S1446788700025738, J. Aust. Math. Soc., Ser. A 35 (1983), 236-253. (1983) Zbl0533.26005MR0704431DOI10.1017/S1446788700025738
  3. Burkill, J. C., 10.1007/BF01180588, Math. Z. 34 (1932), 270-278. (1932) Zbl0002.38604MR1545252DOI10.1007/BF01180588
  4. Cao, S. S., The Henstock integral for Banach-valued functions, Southeast Asian Bull. Math. 16 (1992), 35-40. (1992) Zbl0749.28007MR1173605
  5. Corrao, G., An Henstock-Kurzweil Type Integral on a Measure Metric Space: Doctoral Thesis, Universita Degli Studi Di Palermo, Palermo (2013). (2013) 
  6. Piazza, L. Di, Marraffa, V., Musia{ł}, K., 10.21136/MB.2016.19, Math. Bohem. 141 (2016), 287-296. (2016) Zbl1413.26019MR3499788DOI10.21136/MB.2016.19
  7. Edwards, R. E., Functional Analysis: Theory and Applications, Holt Rinehart and Winston, New York (1965). (1965) Zbl0182.16101MR0221256
  8. Gordon, R. A., 10.1090/gsm/004, Graduate Studies in Mathematics 4. AMS, Providence (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004
  9. Henstock, R., Linear Analysis, Butterworths, London (1967). (1967) Zbl0172.39001MR0419707
  10. Henstock, R., 10.1142/0510, Series in Real Analysis 1. World Scientific, Singapore (1988). (1988) Zbl0668.28001MR0963249DOI10.1142/0510
  11. Henstock, R., The General Theory of Integration, Oxford Mathematical Monographs. Clarendon Press, Oxford (1991). (1991) Zbl0745.26006MR1134656
  12. Kalita, H., Hazarika, B., 10.2298/FIL2220831K, Filomat 36 (2022), 6831-6839. (2022) MR4563043DOI10.2298/FIL2220831K
  13. Lee, P.-Y., 10.1142/0845, Series in Real Analysis 2. World Scientific, London (1989). (1989) Zbl0699.26004MR1050957DOI10.1142/0845
  14. Lee, P. Y., Výborný, R., The Integral: An Easy Approach After Kurzweil and Henstock, Australian Mathematical Society Lecture Series 14. Cambridge University Press, Cambridge (2000). (2000) Zbl0941.26003MR1756319
  15. Leng, N. W., 10.1142/10489, Series in Real Analysis 14. World Scientific, Hackensack (2018). (2018) Zbl1392.28001MR3752602DOI10.1142/10489
  16. Mattila, P., 10.1017/CBO9780511623813, Cambridge Studies in Advanced Mathematics 44. Cambridge University Press, Cambridge (1995). (1995) Zbl0819.28004MR1333890DOI10.1017/CBO9780511623813
  17. Mema, E., 10.12988/imf.2013.13097, Int. Math. Forum 8 (2013), 913-919. (2013) Zbl1285.28017MR3069783DOI10.12988/imf.2013.13097
  18. Park, J. M., Lee, D. H., Yoon, J. H., Kim, B. M., The convergence theorems for ap-integral, J. Chung. Math. Soc. 12 (1999), 113-118. (1999) 
  19. Park, J. M., Oh, J. J., Park, C.-G., Lee, D. H., 10.1007/s10587-007-0106-0, Czech. Math. J. 57 (2007), 689-696. (2007) Zbl1174.26308MR2337623DOI10.1007/s10587-007-0106-0
  20. Perron, O., Über den Integralbegriff, Heidelb. Ak. Sitzungsber. 16 (1914), 1-16 German 9999JFM99999 45.0445.01. (1914) 
  21. Shin, K. C., Yoon, J. H., Properties for AP-Henstock integral, Available at https://www.researchgate.net/publication/349409139PROPERTIESFORTHEAP-HENSTOCKINTEGRAL (2021). (2021) 
  22. Skvortsov, V. A., Sworowska, T., Sworowski, P., On approximately continuous integrals (a survey), Traditional and Present-Day Topics in Real Analysis {Ł}odź University Press, {Ł}odź (2013), 233-252. (2013) Zbl1334.26012MR3204590
  23. Skvortsov, V. A., Sworowski, P., 10.1007/s10587-012-0050-5, Czech. Math. J. 62 (2012), 581-591. (2012) Zbl1265.26019MR2984620DOI10.1007/s10587-012-0050-5
  24. Soedijono, B., Lee, P. Y., Chew, T. S., The Kubota Integral and Beyond, NUS Research Report 389. National University of Singapur, Singapur (1989). (1989) MR1095739
  25. Wiener, N., 10.1007/BF02546511, Acta Math. 55 (1930), 117-258 9999JFM99999 56.0954.02. (1930) MR1555316DOI10.1007/BF02546511

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.