Convergence of ap-Henstock-Kurzweil integral on locally compact spaces
Hemanta Kalita; Ravi P. Agarwal; Bipan Hazarika
Czechoslovak Mathematical Journal (2025)
- Issue: 1, page 103-121
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKalita, Hemanta, Agarwal, Ravi P., and Hazarika, Bipan. "Convergence of ap-Henstock-Kurzweil integral on locally compact spaces." Czechoslovak Mathematical Journal (2025): 103-121. <http://eudml.org/doc/299910>.
@article{Kalita2025,
abstract = {We introduce an ap-Henstock-Kurzweil type integral with a non-atomic Radon measure and prove the Saks-Henstock type lemma. The monotone convergence theorem, $\mu _\{\rm ap\}$-Henstock-Kurzweil equi-integrability, and uniformly strong Lusin condition are discussed.},
author = {Kalita, Hemanta, Agarwal, Ravi P., Hazarika, Bipan},
journal = {Czechoslovak Mathematical Journal},
keywords = {ap-Henstock-Kurzweil integral; uniformly strong Lusin condition; monotone convergence theorem; $\mu _\{\rm ap\}$-Henstock-Kurzweil equi-integrability; Henstock’s lemma},
language = {eng},
number = {1},
pages = {103-121},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence of ap-Henstock-Kurzweil integral on locally compact spaces},
url = {http://eudml.org/doc/299910},
year = {2025},
}
TY - JOUR
AU - Kalita, Hemanta
AU - Agarwal, Ravi P.
AU - Hazarika, Bipan
TI - Convergence of ap-Henstock-Kurzweil integral on locally compact spaces
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 103
EP - 121
AB - We introduce an ap-Henstock-Kurzweil type integral with a non-atomic Radon measure and prove the Saks-Henstock type lemma. The monotone convergence theorem, $\mu _{\rm ap}$-Henstock-Kurzweil equi-integrability, and uniformly strong Lusin condition are discussed.
LA - eng
KW - ap-Henstock-Kurzweil integral; uniformly strong Lusin condition; monotone convergence theorem; $\mu _{\rm ap}$-Henstock-Kurzweil equi-integrability; Henstock’s lemma
UR - http://eudml.org/doc/299910
ER -
References
top- Bongiorno, D., Corrao, G., 10.14321/realanalexch.40.1.0157, Real Anal. Exch. 40 (2015), 157-178. (2015) Zbl1391.26027MR3365396DOI10.14321/realanalexch.40.1.0157
- Bullen, P. S., 10.1017/S1446788700025738, J. Aust. Math. Soc., Ser. A 35 (1983), 236-253. (1983) Zbl0533.26005MR0704431DOI10.1017/S1446788700025738
- Burkill, J. C., 10.1007/BF01180588, Math. Z. 34 (1932), 270-278. (1932) Zbl0002.38604MR1545252DOI10.1007/BF01180588
- Cao, S. S., The Henstock integral for Banach-valued functions, Southeast Asian Bull. Math. 16 (1992), 35-40. (1992) Zbl0749.28007MR1173605
- Corrao, G., An Henstock-Kurzweil Type Integral on a Measure Metric Space: Doctoral Thesis, Universita Degli Studi Di Palermo, Palermo (2013). (2013)
- Piazza, L. Di, Marraffa, V., Musia{ł}, K., 10.21136/MB.2016.19, Math. Bohem. 141 (2016), 287-296. (2016) Zbl1413.26019MR3499788DOI10.21136/MB.2016.19
- Edwards, R. E., Functional Analysis: Theory and Applications, Holt Rinehart and Winston, New York (1965). (1965) Zbl0182.16101MR0221256
- Gordon, R. A., 10.1090/gsm/004, Graduate Studies in Mathematics 4. AMS, Providence (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004
- Henstock, R., Linear Analysis, Butterworths, London (1967). (1967) Zbl0172.39001MR0419707
- Henstock, R., 10.1142/0510, Series in Real Analysis 1. World Scientific, Singapore (1988). (1988) Zbl0668.28001MR0963249DOI10.1142/0510
- Henstock, R., The General Theory of Integration, Oxford Mathematical Monographs. Clarendon Press, Oxford (1991). (1991) Zbl0745.26006MR1134656
- Kalita, H., Hazarika, B., 10.2298/FIL2220831K, Filomat 36 (2022), 6831-6839. (2022) MR4563043DOI10.2298/FIL2220831K
- Lee, P.-Y., 10.1142/0845, Series in Real Analysis 2. World Scientific, London (1989). (1989) Zbl0699.26004MR1050957DOI10.1142/0845
- Lee, P. Y., Výborný, R., The Integral: An Easy Approach After Kurzweil and Henstock, Australian Mathematical Society Lecture Series 14. Cambridge University Press, Cambridge (2000). (2000) Zbl0941.26003MR1756319
- Leng, N. W., 10.1142/10489, Series in Real Analysis 14. World Scientific, Hackensack (2018). (2018) Zbl1392.28001MR3752602DOI10.1142/10489
- Mattila, P., 10.1017/CBO9780511623813, Cambridge Studies in Advanced Mathematics 44. Cambridge University Press, Cambridge (1995). (1995) Zbl0819.28004MR1333890DOI10.1017/CBO9780511623813
- Mema, E., 10.12988/imf.2013.13097, Int. Math. Forum 8 (2013), 913-919. (2013) Zbl1285.28017MR3069783DOI10.12988/imf.2013.13097
- Park, J. M., Lee, D. H., Yoon, J. H., Kim, B. M., The convergence theorems for ap-integral, J. Chung. Math. Soc. 12 (1999), 113-118. (1999)
- Park, J. M., Oh, J. J., Park, C.-G., Lee, D. H., 10.1007/s10587-007-0106-0, Czech. Math. J. 57 (2007), 689-696. (2007) Zbl1174.26308MR2337623DOI10.1007/s10587-007-0106-0
- Perron, O., Über den Integralbegriff, Heidelb. Ak. Sitzungsber. 16 (1914), 1-16 German 9999JFM99999 45.0445.01. (1914)
- Shin, K. C., Yoon, J. H., Properties for AP-Henstock integral, Available at https://www.researchgate.net/publication/349409139PROPERTIESFORTHEAP-HENSTOCKINTEGRAL (2021). (2021)
- Skvortsov, V. A., Sworowska, T., Sworowski, P., On approximately continuous integrals (a survey), Traditional and Present-Day Topics in Real Analysis {Ł}odź University Press, {Ł}odź (2013), 233-252. (2013) Zbl1334.26012MR3204590
- Skvortsov, V. A., Sworowski, P., 10.1007/s10587-012-0050-5, Czech. Math. J. 62 (2012), 581-591. (2012) Zbl1265.26019MR2984620DOI10.1007/s10587-012-0050-5
- Soedijono, B., Lee, P. Y., Chew, T. S., The Kubota Integral and Beyond, NUS Research Report 389. National University of Singapur, Singapur (1989). (1989) MR1095739
- Wiener, N., 10.1007/BF02546511, Acta Math. 55 (1930), 117-258 9999JFM99999 56.0954.02. (1930) MR1555316DOI10.1007/BF02546511
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.