Ideals of homogeneous polynomials and weakly compact approximation property in Banach spaces
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 2, page 763-776
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topÇalışkan, Erhan. "Ideals of homogeneous polynomials and weakly compact approximation property in Banach spaces." Czechoslovak Mathematical Journal 57.2 (2007): 763-776. <http://eudml.org/doc/31161>.
@article{Çalışkan2007,
abstract = {We show that a Banach space $E$ has the weakly compact approximation property if and only if each continuous Banach-valued polynomial on $E$ can be uniformly approximated on compact sets by homogeneous polynomials which are members of the ideal of homogeneous polynomials generated by weakly compact linear operators. An analogous result is established also for the compact approximation property.},
author = {Çalışkan, Erhan},
journal = {Czechoslovak Mathematical Journal},
keywords = {compact approximation property; weakly compact approximation property; ideals of homogeneous polynomials; compact approximation property; weakly compact approximation property; ideals of homogeneous polynomials},
language = {eng},
number = {2},
pages = {763-776},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ideals of homogeneous polynomials and weakly compact approximation property in Banach spaces},
url = {http://eudml.org/doc/31161},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Çalışkan, Erhan
TI - Ideals of homogeneous polynomials and weakly compact approximation property in Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 2
SP - 763
EP - 776
AB - We show that a Banach space $E$ has the weakly compact approximation property if and only if each continuous Banach-valued polynomial on $E$ can be uniformly approximated on compact sets by homogeneous polynomials which are members of the ideal of homogeneous polynomials generated by weakly compact linear operators. An analogous result is established also for the compact approximation property.
LA - eng
KW - compact approximation property; weakly compact approximation property; ideals of homogeneous polynomials; compact approximation property; weakly compact approximation property; ideals of homogeneous polynomials
UR - http://eudml.org/doc/31161
ER -
References
top- 10.1017/S0013091500023543, Proc. Edinb. Math. Soc. 40 (1997), 181–192. (1997) MR1437822DOI10.1017/S0013091500023543
- 10.1016/0022-1236(83)90081-2, J. Funct. Anal. 52 (1983), 189–204. (1983) MR0707203DOI10.1016/0022-1236(83)90081-2
- 10.1017/S0305004100068638, Math. Proc. Camb. Philos. Soc. 107 (1990), 367–375. (1990) MR1027789DOI10.1017/S0305004100068638
- 10.1006/jmaa.2001.7674, J. Math. Anal. Appl. 265 (2002), 458–462. (2002) Zbl1036.46034MR1876152DOI10.1006/jmaa.2001.7674
- Ideals of polynomials generated by weakly compact operators, Note Mat. 25 (2005/2006), 69–102. (2005/2006) MR2220454
- 10.1016/S0019-3577(05)80019-9, Indag. Math. 16 (2005), 157–169. (2005) MR2319290DOI10.1016/S0019-3577(05)80019-9
- 10.4064/sm-107-3-305-315, Stud. Math. 107 (1993), 305–315. (1993) MR1247205DOI10.4064/sm-107-3-305-315
- 10.1016/j.jmaa.2004.04.045, J. Math. Anal. Appl. 297 (2004), 740–750. (2004) MR2088691DOI10.1016/j.jmaa.2004.04.045
- Approximation properties, In: Handbook of the Geometry of Banach Spaces, Vol. I, W. Johnson, J. Lindenstrauss (eds.), North-Holland, Amsterdam, 2001, pp. 271–316. (2001) Zbl1067.46025MR1863695
- Aproximação de funções holomorfas em espaços de dimensão infinita, PhD. Thesis, Universidade Estadual de Campinas, São Paulo, 2003. (2003)
- Bounded holomorphic mappings and the compact approximation property, Port. Math. 61 (2004), 25–33. (2004) MR2040241
- Approximation of holomorphic mappings on infinite dimensional spaces, Rev. Mat. Complut. 17 (2004), 411–434. (2004) MR2083963
- 10.1112/blms/5.3.261, Bull. London Math. Soc. 5 (1973), 261–266. (1973) Zbl0267.46013MR0338735DOI10.1112/blms/5.3.261
- 10.1016/0022-1236(74)90044-5, J. Funct. Anal. 17 (1974), 311–327. (1974) MR0355536DOI10.1016/0022-1236(74)90044-5
- Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Math, Springer-Verlag, Berlin, 1999. (1999) MR1705327
- 10.4064/sm-45-2-191-210, Stud. Math. 45 (1973), 191–210. (1973) MR0336294DOI10.4064/sm-45-2-191-210
- 10.4153/CMB-1993-008-8, Can. Math. Bull. 36 (1993), 45–53. (1993) MR1205894DOI10.4153/CMB-1993-008-8
- 10.1016/0022-1236(80)90089-0, J. Funct. Anal. 35 (1980), 397–411. (1980) Zbl0439.47029MR0563562DOI10.1016/0022-1236(80)90089-0
- 10.1007/BF02810673, Isr. J. Math. 119 (2000), 325–348. (2000) MR1802659DOI10.1007/BF02810673
- Weakly compact sets—their topological properties and the Banach spaces they generate, In: Symposium on Infinite Dimensional Topology. Ann. Math. Stud., R. D. Anderson (eds.), Princeton Univ. Press, Princeton, 1972, pp. 235–273. (1972) Zbl0232.46019MR0417761
- Classical Banach Spaces I. Sequence Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1977. (1977) MR0500056
- Complex Analysis in Banach Spaces. North-Holland Math. Stud, North-Holland, Amsterdam, 1986. (1986) MR0842435
- 10.1090/S0002-9947-1991-1000146-2, Trans. Am. Math. Soc. 324 (1991), 867–887. (1991) Zbl0747.46038MR1000146DOI10.1090/S0002-9947-1991-1000146-2
- Reflexive spaces of homogeneous polynomials, Bull. Pol. Acad. Sci. Math. 49 (2001), 211–223. (2001) Zbl1068.46027MR1863260
- Holomorphic germs on Tsirelson’s space, Proc. Am. Math. Soc. 123 (1995), 1379–1384. (1995) MR1219730
- Operator Ideals, North Holland, Amsterdam, 1980. (1980) Zbl0455.47032MR0582655
- Ideals of multilinear functionals, In: Proceedings of the Second International Conference on Operator Algebras, Ideals and Applications in Theoretical Physics, Teubner, Leipzig, 1983, pp. 185–199. (1983) Zbl0561.47037MR0763541
- Applications of topological tensor products to infinite dimensional holomorphy, PhD. Thesis, Trinity College, Dublin, 1980. (1980)
- 10.4064/sm-103-1-99-108, Stud. Math. 103 (1992), 99–108. (1992) Zbl0814.46017MR1184105DOI10.4064/sm-103-1-99-108
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.