A general class of iterative equations on the unit circle

Marek Cezary Zdun; Wei Nian Zhang

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 3, page 809-829
  • ISSN: 0011-4642

Abstract

top
A class of functional equations with nonlinear iterates is discussed on the unit circle 𝕋 1 . By lifting maps on 𝕋 1 and maps on the torus 𝕋 n to Euclidean spaces and extending their restrictions to a compact interval or cube, we prove existence, uniqueness and stability for their continuous solutions.

How to cite

top

Zdun, Marek Cezary, and Zhang, Wei Nian. "A general class of iterative equations on the unit circle." Czechoslovak Mathematical Journal 57.3 (2007): 809-829. <http://eudml.org/doc/31164>.

@article{Zdun2007,
abstract = {A class of functional equations with nonlinear iterates is discussed on the unit circle $\{\mathbb \{T\}\}^1$. By lifting maps on $\{\mathbb \{T\}\}^1$ and maps on the torus $\{\mathbb \{T\}\}^n$ to Euclidean spaces and extending their restrictions to a compact interval or cube, we prove existence, uniqueness and stability for their continuous solutions.},
author = {Zdun, Marek Cezary, Zhang, Wei Nian},
journal = {Czechoslovak Mathematical Journal},
keywords = {iterative equation; circle; lift; orientation-preserving; continuation; iterative equation; circle; lift; orientation-preserving; continuation},
language = {eng},
number = {3},
pages = {809-829},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A general class of iterative equations on the unit circle},
url = {http://eudml.org/doc/31164},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Zdun, Marek Cezary
AU - Zhang, Wei Nian
TI - A general class of iterative equations on the unit circle
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 3
SP - 809
EP - 829
AB - A class of functional equations with nonlinear iterates is discussed on the unit circle ${\mathbb {T}}^1$. By lifting maps on ${\mathbb {T}}^1$ and maps on the torus ${\mathbb {T}}^n$ to Euclidean spaces and extending their restrictions to a compact interval or cube, we prove existence, uniqueness and stability for their continuous solutions.
LA - eng
KW - iterative equation; circle; lift; orientation-preserving; continuation; iterative equation; circle; lift; orientation-preserving; continuation
UR - http://eudml.org/doc/31164
ER -

References

top
  1. 10.1007/s000100050023, Aequationes Math. 55 (1998), 106–121. (1998) Zbl0891.39017MR1600588DOI10.1007/s000100050023
  2. 10.1007/s000100050159, Aequationes Math. 61 (2001), 1–48. (2001) MR1820808DOI10.1007/s000100050159
  3. On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups, Publ. Math. Debrecen 55 (1999), 363–383. (1999) MR1721896
  4. On properties of monotone mappings of the circle, J. Anal. Appl. 4 (2006), 169–178. (2006) MR2237441
  5. Ergodic Theory, Grundlehren 245, Springer Verlag, Berlin-Heidelberg-New York, 1982. (1982) MR0832433
  6. 10.1007/BF01833285, Aequationes Math. 51 (1996), 303–310. (1996) Zbl0872.39010MR1394735DOI10.1007/BF01833285
  7. Babbage equation on the circle, Publ. Math. Debrecen 63 (2003), 389–400. (2003) MR2018071
  8. Iterative Functional Equations, Encycl. Math. Appl. 32, Cambridge Univ. Press, Cambridge, 1990. (1990) MR1067720
  9. 10.1007/s00010-002-8028-2, Aequationes Math. 64 (2002), 24–33. (2002) MR1929247DOI10.1007/s00010-002-8028-2
  10. Conditions of existence for N -th iterative roots of homeomorphisms on the circle, in Chinese, Acta Math. Sinica 30 (1987), 280–283. (1987) MR0891939
  11. Existence, uniqueness and stability of C m solutions of iterative functional equations, Science in China A43 (2000), 897–913. (2000) MR1804042
  12. On the polynomial-like iterative functional equation, Functional Equations & Inequalities, Math.& Its Appl. Vol. 518, ed. T. M. Rassias, Kluwer Academic, Dordrecht, 2000, pp. 145–170. (2000) MR1792082
  13. On a functional equation involving iterates of a bijection on the unit interval, Nonlinear Anal. 7 (1983), 899–908. (1983) MR0709042
  14. Geometric Theory of Dynamical Systems, An Introduction, Springer-Verlag, New York, 1982. (1982) MR0669541
  15. Continuous solutions of iterative equation G ( f ( x ) , f n 2 ( x ) , , f n k ( x ) ) = F ( x ) , J. Math. Res. Exp. 15 (1995), 149–150. (Chinese) (1995) MR1334273
  16. On some iterative roots on the circle, Publ. Math. Debrecen 63 (2003), 677–692. (2003) Zbl1050.39027MR2020780
  17. 10.1007/BF03322847, Results in Math. 27 (1995), 412–421. (1995) MR1331116DOI10.1007/BF03322847
  18. A Geometric Introduction to Topology, Addison-Wesley, Reading, 1972. (1972) MR0478128
  19. 10.1007/s00010-003-2708-4, Aequationes Math. 67 (2004), 80–105. (2004) MR2049607DOI10.1007/s00010-003-2708-4
  20. On iterative roots of homeomorphisms of the circle, Bull. Polish Acad. Sci. Math. 48 (2000), 203–213. (2000) Zbl0996.39016MR1768699
  21. Some advances on functional equations, Adv. Math. (Chin.) 24 (1995), 385–405. (1995) MR1381750
  22. Discussion on the solutions of the iterated equation i = 1 n λ i f i ( x ) = F ( x ) , Chin. Sci. Bul. 32 (1987), 1444–1451. (1987) MR1006051
  23. 10.1016/0362-546X(90)90147-9, Nonlinear Anal. 15 (1990), 387–398. (1990) MR1066395DOI10.1016/0362-546X(90)90147-9
  24. 10.4064/ap-73-1-29-36, Ann. Polon. Math. 73 (2000), 29–36. (2000) MR1786685DOI10.4064/ap-73-1-29-36
  25. Solutions of equivariance for a polynomial-like iterative equation, Proc. Royal Soc. Edinburgh 130A (2000), 1153–1163. (2000) Zbl0983.39010MR1800096
  26. Relations between embedding flows and transformation groups of self-mappings on the circle, Acta Math. Sinica 24 (1981), 953–957. (Chinese) (1981) MR0658369

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.