The Kato-type spectrum and local spectral theory
T. L. Miller; V. G. Miller; Michael M. Neumann
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 3, page 831-842
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMiller, T. L., Miller, V. G., and Neumann, Michael M.. "The Kato-type spectrum and local spectral theory." Czechoslovak Mathematical Journal 57.3 (2007): 831-842. <http://eudml.org/doc/31165>.
@article{Miller2007,
abstract = {Let $T\in \{\mathcal \{L\}\}(X)$ be a bounded operator on a complex Banach space $X$. If $V$ is an open subset of the complex plane such that $\lambda -T$ is of Kato-type for each $\lambda \in V$, then the induced mapping $f(z)\mapsto (z-T)f(z)$ has closed range in the Fréchet space of analytic $X$-valued functions on $V$. Since semi-Fredholm operators are of Kato-type, this generalizes a result of Eschmeier on Fredholm operators and leads to a sharper estimate of Nagy’s spectral residuum of $T$. Our proof is elementary; in particular, we avoid the sheaf model of Eschmeier and Putinar and the theory of coherent analytic sheaves.},
author = {Miller, T. L., Miller, V. G., Neumann, Michael M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {decomposable operator; semi-Fredholm operator; semi-regular operator; Kato decomposition; Bishop’s property ($\beta $); property ($\delta $); decomposable operator; semi-Fredholm operator; semi-regular operator; Kato decomposition; Bishop’s property (); property ()},
language = {eng},
number = {3},
pages = {831-842},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Kato-type spectrum and local spectral theory},
url = {http://eudml.org/doc/31165},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Miller, T. L.
AU - Miller, V. G.
AU - Neumann, Michael M.
TI - The Kato-type spectrum and local spectral theory
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 3
SP - 831
EP - 842
AB - Let $T\in {\mathcal {L}}(X)$ be a bounded operator on a complex Banach space $X$. If $V$ is an open subset of the complex plane such that $\lambda -T$ is of Kato-type for each $\lambda \in V$, then the induced mapping $f(z)\mapsto (z-T)f(z)$ has closed range in the Fréchet space of analytic $X$-valued functions on $V$. Since semi-Fredholm operators are of Kato-type, this generalizes a result of Eschmeier on Fredholm operators and leads to a sharper estimate of Nagy’s spectral residuum of $T$. Our proof is elementary; in particular, we avoid the sheaf model of Eschmeier and Putinar and the theory of coherent analytic sheaves.
LA - eng
KW - decomposable operator; semi-Fredholm operator; semi-regular operator; Kato decomposition; Bishop’s property ($\beta $); property ($\delta $); decomposable operator; semi-Fredholm operator; semi-regular operator; Kato decomposition; Bishop’s property (); property ()
UR - http://eudml.org/doc/31165
ER -
References
top- Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publ., Dordrecht, 2004. (2004) Zbl1077.47001MR2070395
- Components of resolvent sets and local spectral theory, Proceedings of the Fourth Conference on Function Spaces at Edwardsville, Contemp. Math. 328, Amer. Math. Soc., Providence, RI, 2003, pp. 1–14. (2003) MR1990385
- Analytic functional models and local spectral theory, Proc. London Math. Soc. 75 (1997), 323–348. (1997) MR1455859
- Analytische Dualität und Tensorprodukte in der mehrdimensionalen Spektraltheorie, Habilitationsschrift, Schriftenreihe des Mathematischen Instituts der Universität Münster, 2. Serie, Heft 42, Münster, 1987. (1987) Zbl0619.47030MR0876484
- On the essential spectrum of Banach space operators, Proc. Edinburgh Math. Soc. 43 (2000), 511–528. (2000) Zbl0980.47004MR1878655
- 10.4153/CJM-1988-066-x, Can. J. Math. 40 (1988), 1436–1457. (1988) Zbl0723.47015MR0990108DOI10.4153/CJM-1988-066-x
- 10.1007/BF02790238, J. Anal. Math. 6 (1958), 261–322. (1958) Zbl0090.09003MR0107819DOI10.1007/BF02790238
- 10.1007/BF02849344, Rend. Circ. Mat. Palermo 29 (1980), 161–258. (1980) Zbl0474.47008MR0636072DOI10.1007/BF02849344
- An Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000. (2000) MR1747914
- 10.1017/S0017089500031219, Glasgow Math. J. 38 (1996), 21–28. (1996) MR1373954DOI10.1017/S0017089500031219
- Localization in the spectral theory of operators on Banach spaces, Proceedings of the Fourth Conference on Function Spaces at Edwardsville, Contemp. Math. 328, Amer. Math. Soc., Providence, RI, 2003, pp. 247–262. MR1990406
- On -decomposable operators, J. Operator Theory 2 (1979), 277–286. (1979) Zbl0436.47024MR0559609
- 10.1007/BF01203128, Int. Eq. and Oper. Theory 15 (1992), 1047–1052. (1992) Zbl0773.47011MR1188794DOI10.1007/BF01203128
- Analytic Functional Calculus and Spectral Decompositions, Editura Academiei and D. Reidel Publishing Company, Bucharest and Dordrecht, 1982. (1982) Zbl0495.47013MR0690957
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.