The axioms for implication in orthologic

Ivan Chajda

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 1, page 15-21
  • ISSN: 0011-4642

Abstract

top
We set up axioms characterizing logical connective implication in a logic derived by an ortholattice. It is a natural generalization of an orthoimplication algebra given by J. C. Abbott for a logic derived by an orthomodular lattice.

How to cite

top

Chajda, Ivan. "The axioms for implication in orthologic." Czechoslovak Mathematical Journal 58.1 (2008): 15-21. <http://eudml.org/doc/31196>.

@article{Chajda2008,
abstract = {We set up axioms characterizing logical connective implication in a logic derived by an ortholattice. It is a natural generalization of an orthoimplication algebra given by J. C. Abbott for a logic derived by an orthomodular lattice.},
author = {Chajda, Ivan},
journal = {Czechoslovak Mathematical Journal},
keywords = {ortholattice; orthoimplication; orthologic; ortholattice; orthoimplication; orthologic},
language = {eng},
number = {1},
pages = {15-21},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The axioms for implication in orthologic},
url = {http://eudml.org/doc/31196},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Chajda, Ivan
TI - The axioms for implication in orthologic
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 1
SP - 15
EP - 21
AB - We set up axioms characterizing logical connective implication in a logic derived by an ortholattice. It is a natural generalization of an orthoimplication algebra given by J. C. Abbott for a logic derived by an orthomodular lattice.
LA - eng
KW - ortholattice; orthoimplication; orthologic; ortholattice; orthoimplication; orthologic
UR - http://eudml.org/doc/31196
ER -

References

top
  1. Semi-boolean algebra, Matematički Vesnik 4 (1967), 177–198. (1967) Zbl0153.02704MR0239957
  2. 10.1007/BF02120879, Studia Logica 35 (1976), 173–177. (1976) Zbl0331.02036MR0441794DOI10.1007/BF02120879
  3. 10.1023/A:1011933018776, Intern. J. of Theor. Phys. 40 (2001), 1875–1884. (2001) MR1860644DOI10.1023/A:1011933018776
  4. 10.1023/B:IJTP.0000048587.50827.93, Intern. J. of Theor. Phys. 43 (2004), 911–914. (2004) MR2106354DOI10.1023/B:IJTP.0000048587.50827.93
  5. Congruence Classes in Universal Algebra, Heldermann Verlag, 2003. (2003) MR1985832
  6. 10.7146/math.scand.a-10850, Math. Scand. 21 (1967), 110–121. (1967) MR0237402DOI10.7146/math.scand.a-10850
  7. Orthomodular Lattices, Academic Press, London, 1983. (1983) Zbl0528.06012MR0716496

NotesEmbed ?

top

You must be logged in to post comments.