On the Euler function of repdigits
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 1, page 51-59
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLuca, Florian. "On the Euler function of repdigits." Czechoslovak Mathematical Journal 58.1 (2008): 51-59. <http://eudml.org/doc/31198>.
@article{Luca2008,
abstract = {For a positive integer $n$ we write $\phi (n)$ for the Euler function of $n$. In this note, we show that if $b>1$ is a fixed positive integer, then the equation \[ \phi \Big (x\frac\{b^n-1\}\{b-1\}\Big )=y\frac\{b^m-1\}\{b-1\},\qquad \{\text\{where\}\} \ x,~y\in \lbrace 1,\ldots ,b-1\rbrace , \]
has only finitely many positive integer solutions $(x,y,m,n)$.},
author = {Luca, Florian},
journal = {Czechoslovak Mathematical Journal},
keywords = {Euler function; prime; divisor; Euler function; prime; divisor},
language = {eng},
number = {1},
pages = {51-59},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Euler function of repdigits},
url = {http://eudml.org/doc/31198},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Luca, Florian
TI - On the Euler function of repdigits
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 1
SP - 51
EP - 59
AB - For a positive integer $n$ we write $\phi (n)$ for the Euler function of $n$. In this note, we show that if $b>1$ is a fixed positive integer, then the equation \[ \phi \Big (x\frac{b^n-1}{b-1}\Big )=y\frac{b^m-1}{b-1},\qquad {\text{where}} \ x,~y\in \lbrace 1,\ldots ,b-1\rbrace , \]
has only finitely many positive integer solutions $(x,y,m,n)$.
LA - eng
KW - Euler function; prime; divisor; Euler function; prime; divisor
UR - http://eudml.org/doc/31198
ER -
References
top- Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte), J. Reine Angew. Math. 539 (2001), 75–122. (2001) MR1863855
- On the numerical factors of the arithmetic forms , Ann. Math. 15 (1913), 30–70. (1913) MR1502458
- On the equation , Indian J. Pure Appl. Math. 30 (1999), 183–197. (1999) MR1681596
- On the equation , Irish Math. Soc. Bull. 40 (1998), 46–55. (1998) MR1635032
- Euler indicators of binary recurrent sequences, Collect. Math. 53 (2002), 133–156. (2002) MR1913514
- 10.2307/2975296, Amer. Math. Monthly 104 (1997), 871. (1997) DOI10.2307/2975296
- 10.1215/ijm/1256049659, Illinois J. Math. 20 (1976), 681–705 Zbl 0329.10035. (1976) Zbl0329.10035MR0419382DOI10.1215/ijm/1256049659
- On the distribution of amicable numbers, J. Reine Angew. Math. 293/294 (1977), 217–222. (1977) Zbl0349.10004MR0447087
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.