On the Euler function of repdigits

Florian Luca

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 1, page 51-59
  • ISSN: 0011-4642

Abstract

top
For a positive integer n we write φ ( n ) for the Euler function of n . In this note, we show that if b > 1 is a fixed positive integer, then the equation φ x b n - 1 b - 1 = y b m - 1 b - 1 , where x , y { 1 , ... , b - 1 } , has only finitely many positive integer solutions ( x , y , m , n ) .

How to cite

top

Luca, Florian. "On the Euler function of repdigits." Czechoslovak Mathematical Journal 58.1 (2008): 51-59. <http://eudml.org/doc/31198>.

@article{Luca2008,
abstract = {For a positive integer $n$ we write $\phi (n)$ for the Euler function of $n$. In this note, we show that if $b>1$ is a fixed positive integer, then the equation \[ \phi \Big (x\frac\{b^n-1\}\{b-1\}\Big )=y\frac\{b^m-1\}\{b-1\},\qquad \{\text\{where\}\} \ x,~y\in \lbrace 1,\ldots ,b-1\rbrace , \] has only finitely many positive integer solutions $(x,y,m,n)$.},
author = {Luca, Florian},
journal = {Czechoslovak Mathematical Journal},
keywords = {Euler function; prime; divisor; Euler function; prime; divisor},
language = {eng},
number = {1},
pages = {51-59},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Euler function of repdigits},
url = {http://eudml.org/doc/31198},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Luca, Florian
TI - On the Euler function of repdigits
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 1
SP - 51
EP - 59
AB - For a positive integer $n$ we write $\phi (n)$ for the Euler function of $n$. In this note, we show that if $b>1$ is a fixed positive integer, then the equation \[ \phi \Big (x\frac{b^n-1}{b-1}\Big )=y\frac{b^m-1}{b-1},\qquad {\text{where}} \ x,~y\in \lbrace 1,\ldots ,b-1\rbrace , \] has only finitely many positive integer solutions $(x,y,m,n)$.
LA - eng
KW - Euler function; prime; divisor; Euler function; prime; divisor
UR - http://eudml.org/doc/31198
ER -

References

top
  1. Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte), J. Reine Angew. Math. 539 (2001), 75–122. (2001) MR1863855
  2. On the numerical factors of the arithmetic forms α n ± β n , Ann. Math. 15 (1913), 30–70. (1913) MR1502458
  3. On the equation φ ( | x m + y m | ) = | x n + y n | , Indian J. Pure Appl. Math. 30 (1999), 183–197. (1999) MR1681596
  4. On the equation φ ( x m - y m ) = x n + y n , Irish Math. Soc. Bull. 40 (1998), 46–55. (1998) MR1635032
  5. Euler indicators of binary recurrent sequences, Collect. Math. 53 (2002), 133–156. (2002) MR1913514
  6. 10.2307/2975296, Amer. Math. Monthly 104 (1997), 871. (1997) DOI10.2307/2975296
  7. 10.1215/ijm/1256049659, Illinois J. Math. 20 (1976), 681–705 Zbl 0329.10035. (1976) Zbl0329.10035MR0419382DOI10.1215/ijm/1256049659
  8. On the distribution of amicable numbers, J. Reine Angew. Math. 293/294 (1977), 217–222. (1977) Zbl0349.10004MR0447087

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.