On a class of nonlinear problems involving a -Laplace type operator
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 1, page 155-172
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMihăilescu, Mihai. "On a class of nonlinear problems involving a $p(x)$-Laplace type operator." Czechoslovak Mathematical Journal 58.1 (2008): 155-172. <http://eudml.org/doc/31205>.
@article{Mihăilescu2008,
abstract = {We study the boundary value problem $-\{\mathrm \{d\}iv\}((|\nabla u|^\{p_1(x) -2\}+|\nabla u|^\{p_2(x)-2\})\nabla u)=f(x,u)$ in $\Omega $, $u=0$ on $\partial \Omega $, where $\Omega $ is a smooth bounded domain in $\{\mathbb \{R\}\} ^N$. Our attention is focused on two cases when $f(x,u)=\pm (-\lambda |u|^\{m(x)-2\}u+|u|^\{q(x)-2\}u)$, where $m(x)=\max \lbrace p_1(x),p_2(x)\rbrace $ for any $x\in \overline\{\Omega \}$ or $m(x)<q(x)< \frac\{N\cdot m(x)\}\{(N-m(x))\}$ for any $x\in \overline\{\Omega \}$. In the former case we show the existence of infinitely many weak solutions for any $\lambda >0$. In the latter we prove that if $\lambda $ is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a $\{\mathbb \{Z\}\} _2$-symmetric version for even functionals of the Mountain Pass Theorem and some adequate variational methods.},
author = {Mihăilescu, Mihai},
journal = {Czechoslovak Mathematical Journal},
keywords = {$p(x)$-Laplace operator; generalized Lebesgue-Sobolev space; critical point; weak solution; electrorheological fluid; -Laplace operator; generalized Lebesgue-Sobolev space; critical point; weak solution; electrorheological fluid},
language = {eng},
number = {1},
pages = {155-172},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a class of nonlinear problems involving a $p(x)$-Laplace type operator},
url = {http://eudml.org/doc/31205},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Mihăilescu, Mihai
TI - On a class of nonlinear problems involving a $p(x)$-Laplace type operator
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 1
SP - 155
EP - 172
AB - We study the boundary value problem $-{\mathrm {d}iv}((|\nabla u|^{p_1(x) -2}+|\nabla u|^{p_2(x)-2})\nabla u)=f(x,u)$ in $\Omega $, $u=0$ on $\partial \Omega $, where $\Omega $ is a smooth bounded domain in ${\mathbb {R}} ^N$. Our attention is focused on two cases when $f(x,u)=\pm (-\lambda |u|^{m(x)-2}u+|u|^{q(x)-2}u)$, where $m(x)=\max \lbrace p_1(x),p_2(x)\rbrace $ for any $x\in \overline{\Omega }$ or $m(x)<q(x)< \frac{N\cdot m(x)}{(N-m(x))}$ for any $x\in \overline{\Omega }$. In the former case we show the existence of infinitely many weak solutions for any $\lambda >0$. In the latter we prove that if $\lambda $ is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a ${\mathbb {Z}} _2$-symmetric version for even functionals of the Mountain Pass Theorem and some adequate variational methods.
LA - eng
KW - $p(x)$-Laplace operator; generalized Lebesgue-Sobolev space; critical point; weak solution; electrorheological fluid; -Laplace operator; generalized Lebesgue-Sobolev space; critical point; weak solution; electrorheological fluid
UR - http://eudml.org/doc/31205
ER -
References
top- 10.1007/s002050100117, Arch. Rational Mech. Anal. 156 (2001), 121–140. (2001) MR1814973DOI10.1007/s002050100117
- Existence of solutions for a class of problems involving the -Laplacian, Progress in Nonlinear Differential Equations and Their Applications 66 (2005), 17–32. (2005) MR2187792
- Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381. (1973) MR0370183
- Analyse fonctionnelle: théorie et applications, Masson, Paris, 1992. (1992) MR0697382
- Theorical and numerical results for electrorheological fluids, Ph.D. thesis, University of Freiburg, Germany, 2002. (2002)
- On norms, Proc. Roy. Soc. London Ser. A 455 (1999), 219–225. (1999) MR1700499
- Density of smooth functions in , Proc. Roy. Soc. London Ser. A 437 (1992), 229–236. (1992) MR1177754
- 10.4064/sm-143-3-267-293, Studia Math. 143 (2000), 267–293. (2000) MR1815935DOI10.4064/sm-143-3-267-293
- 10.1006/jmaa.2001.7618, J. Math. Anal. Appl. 262 (2001), 749–760. (2001) MR1859337DOI10.1006/jmaa.2001.7618
- 10.1016/S0362-546X(02)00150-5, Nonlinear Anal. 52 (2003), 1843–1852. (2003) MR1954585DOI10.1016/S0362-546X(02)00150-5
- 10.1016/j.jmaa.2003.11.020, J. Math. Anal. Appl. 302 (2005), 306–317. (2005) MR2107835DOI10.1016/j.jmaa.2003.11.020
- On the spaces and , J. Math. Anal. Appl. 263 (2001), 424–446. (2001) MR1866056
- 10.1126/science.258.5083.761, Science 258 (1992), 761–766. (1992) DOI10.1126/science.258.5083.761
- On spaces and , Czech. Math. J. 41 (1991), 592–618. (1991) MR1134951
- 10.1023/A:1022483721944, Czech. Math. J. 49 (1999), 633–644. (1999) MR1708338DOI10.1023/A:1022483721944
- 10.1016/0022-0396(91)90158-6, J. Differential Equations 90 (1991), 1–30. (1991) Zbl0724.35043MR1094446DOI10.1016/0022-0396(91)90158-6
- Elliptic problems in variable exponent spaces, Bull. Austral. Math. Soc. 74 (2006), 197–206. (2006) MR2260488
- A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. Roy. Soc. London Ser. A 462 (2006), 2625–2641. (2006) MR2253555
- 10.1090/S0002-9939-07-08815-6, Proceedings of the American Mathematical Society 135 (2007), no. 9, 2929–2937. (2007) MR2317971DOI10.1090/S0002-9939-07-08815-6
- Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, Vol. 1034, Springer, Berlin, 1983. (1983) Zbl0557.46020MR0724434
- 10.4064/sm-18-1-49-65, Studia Math. 18 (1959), 49–65. (1959) MR0101487DOI10.4064/sm-18-1-49-65
- Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950. (1950) Zbl0041.23401MR0038565
- 10.4064/sm-3-1-200-211, Studia Math. 3 (1931), 200–211. (1931) Zbl0003.25203DOI10.4064/sm-3-1-200-211
- Electrorheological fluid based force feedback device, in Proceedings of the 1999 SPIE Telemanipulator and Telepresence Technologies VI Conference (Boston, MA), Vol. 3840, 1999, pp. 88–99. (1999)
- Minimax methods in critical point theory with applications to differential equations, Expository Lectures from the CBMS Regional Conference held at the University of Miami, American Mathematical Society, Providence, RI, 1984. (1984) MR0845785
- Electrorheological Fluids Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2002. (2002) MR1810360
- On the topology of the space , Matem. Zametki 26 (1978), 613–632. (1978) MR0552723
- Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Heidelberg, 1996. (1996) Zbl0864.49001MR1411681
- Generalization of the problem of best approximation of a function in the space , Uch. Zap. Dagestan Gos. Univ. 7 (1961), 25–37. (1961)
- 10.1063/1.1698285, J. Appl. Phys. 20 (1949), 1137–1140. (1949) DOI10.1063/1.1698285
- 10.1016/j.jmaa.2005.03.013, J. Math. Anal. Appl. 312 (2005), 24–32. (2005) Zbl1162.35374MR2175201DOI10.1016/j.jmaa.2005.03.013
- 10.1070/IM1987v029n01ABEH000958, Math. USSR Izv. 29 (1987), 33–66. (1987) DOI10.1070/IM1987v029n01ABEH000958
- On passing to the limit in nonlinear variational problem, Math. Sb. 183 (1992), 47–84. (1992) MR1187249
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.