On a class of nonlinear problems involving a p ( x ) -Laplace type operator

Mihai Mihăilescu

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 1, page 155-172
  • ISSN: 0011-4642

Abstract

top
We study the boundary value problem - d i v ( ( | u | p 1 ( x ) - 2 + | u | p 2 ( x ) - 2 ) u ) = f ( x , u ) in Ω , u = 0 on Ω , where Ω is a smooth bounded domain in N . Our attention is focused on two cases when f ( x , u ) = ± ( - λ | u | m ( x ) - 2 u + | u | q ( x ) - 2 u ) , where m ( x ) = max { p 1 ( x ) , p 2 ( x ) } for any x Ω ¯ or m ( x ) < q ( x ) < N · m ( x ) ( N - m ( x ) ) for any x Ω ¯ . In the former case we show the existence of infinitely many weak solutions for any λ > 0 . In the latter we prove that if λ is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a 2 -symmetric version for even functionals of the Mountain Pass Theorem and some adequate variational methods.

How to cite

top

Mihăilescu, Mihai. "On a class of nonlinear problems involving a $p(x)$-Laplace type operator." Czechoslovak Mathematical Journal 58.1 (2008): 155-172. <http://eudml.org/doc/31205>.

@article{Mihăilescu2008,
abstract = {We study the boundary value problem $-\{\mathrm \{d\}iv\}((|\nabla u|^\{p_1(x) -2\}+|\nabla u|^\{p_2(x)-2\})\nabla u)=f(x,u)$ in $\Omega $, $u=0$ on $\partial \Omega $, where $\Omega $ is a smooth bounded domain in $\{\mathbb \{R\}\} ^N$. Our attention is focused on two cases when $f(x,u)=\pm (-\lambda |u|^\{m(x)-2\}u+|u|^\{q(x)-2\}u)$, where $m(x)=\max \lbrace p_1(x),p_2(x)\rbrace $ for any $x\in \overline\{\Omega \}$ or $m(x)<q(x)< \frac\{N\cdot m(x)\}\{(N-m(x))\}$ for any $x\in \overline\{\Omega \}$. In the former case we show the existence of infinitely many weak solutions for any $\lambda >0$. In the latter we prove that if $\lambda $ is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a $\{\mathbb \{Z\}\} _2$-symmetric version for even functionals of the Mountain Pass Theorem and some adequate variational methods.},
author = {Mihăilescu, Mihai},
journal = {Czechoslovak Mathematical Journal},
keywords = {$p(x)$-Laplace operator; generalized Lebesgue-Sobolev space; critical point; weak solution; electrorheological fluid; -Laplace operator; generalized Lebesgue-Sobolev space; critical point; weak solution; electrorheological fluid},
language = {eng},
number = {1},
pages = {155-172},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a class of nonlinear problems involving a $p(x)$-Laplace type operator},
url = {http://eudml.org/doc/31205},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Mihăilescu, Mihai
TI - On a class of nonlinear problems involving a $p(x)$-Laplace type operator
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 1
SP - 155
EP - 172
AB - We study the boundary value problem $-{\mathrm {d}iv}((|\nabla u|^{p_1(x) -2}+|\nabla u|^{p_2(x)-2})\nabla u)=f(x,u)$ in $\Omega $, $u=0$ on $\partial \Omega $, where $\Omega $ is a smooth bounded domain in ${\mathbb {R}} ^N$. Our attention is focused on two cases when $f(x,u)=\pm (-\lambda |u|^{m(x)-2}u+|u|^{q(x)-2}u)$, where $m(x)=\max \lbrace p_1(x),p_2(x)\rbrace $ for any $x\in \overline{\Omega }$ or $m(x)<q(x)< \frac{N\cdot m(x)}{(N-m(x))}$ for any $x\in \overline{\Omega }$. In the former case we show the existence of infinitely many weak solutions for any $\lambda >0$. In the latter we prove that if $\lambda $ is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a ${\mathbb {Z}} _2$-symmetric version for even functionals of the Mountain Pass Theorem and some adequate variational methods.
LA - eng
KW - $p(x)$-Laplace operator; generalized Lebesgue-Sobolev space; critical point; weak solution; electrorheological fluid; -Laplace operator; generalized Lebesgue-Sobolev space; critical point; weak solution; electrorheological fluid
UR - http://eudml.org/doc/31205
ER -

References

top
  1. 10.1007/s002050100117, Arch. Rational Mech. Anal. 156 (2001), 121–140. (2001) MR1814973DOI10.1007/s002050100117
  2. Existence of solutions for a class of problems involving the p ( x ) -Laplacian, Progress in Nonlinear Differential Equations and Their Applications 66 (2005), 17–32. (2005) MR2187792
  3. Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381. (1973) MR0370183
  4. Analyse fonctionnelle: théorie et applications, Masson, Paris, 1992. (1992) MR0697382
  5. Theorical and numerical results for electrorheological fluids, Ph.D. thesis, University of Freiburg, Germany, 2002. (2002) 
  6. On L p ( x ) norms, Proc. Roy. Soc. London Ser. A 455 (1999), 219–225. (1999) MR1700499
  7. Density of smooth functions in W k , p ( x ) ( Ω ) , Proc. Roy. Soc. London Ser. A 437 (1992), 229–236. (1992) MR1177754
  8. 10.4064/sm-143-3-267-293, Studia Math. 143 (2000), 267–293. (2000) MR1815935DOI10.4064/sm-143-3-267-293
  9. 10.1006/jmaa.2001.7618, J. Math. Anal. Appl. 262 (2001), 749–760. (2001) MR1859337DOI10.1006/jmaa.2001.7618
  10. 10.1016/S0362-546X(02)00150-5, Nonlinear Anal. 52 (2003), 1843–1852. (2003) MR1954585DOI10.1016/S0362-546X(02)00150-5
  11. 10.1016/j.jmaa.2003.11.020, J. Math. Anal. Appl. 302 (2005), 306–317. (2005) MR2107835DOI10.1016/j.jmaa.2003.11.020
  12. On the spaces L p ( x ) ( Ω ) and W m , p ( x ) ( Ω ) , J. Math. Anal. Appl. 263 (2001), 424–446. (2001) MR1866056
  13. 10.1126/science.258.5083.761, Science 258 (1992), 761–766. (1992) DOI10.1126/science.258.5083.761
  14. On spaces L p ( x ) and W 1 , p ( x ) , Czech. Math. J. 41 (1991), 592–618. (1991) MR1134951
  15. 10.1023/A:1022483721944, Czech. Math. J. 49 (1999), 633–644. (1999) MR1708338DOI10.1023/A:1022483721944
  16. 10.1016/0022-0396(91)90158-6, J. Differential Equations 90 (1991), 1–30. (1991) Zbl0724.35043MR1094446DOI10.1016/0022-0396(91)90158-6
  17. Elliptic problems in variable exponent spaces, Bull. Austral. Math. Soc. 74 (2006), 197–206. (2006) MR2260488
  18. A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. Roy. Soc. London Ser. A 462 (2006), 2625–2641. (2006) MR2253555
  19. 10.1090/S0002-9939-07-08815-6, Proceedings of the American Mathematical Society 135 (2007), no. 9, 2929–2937. (2007) MR2317971DOI10.1090/S0002-9939-07-08815-6
  20. Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, Vol. 1034, Springer, Berlin, 1983. (1983) Zbl0557.46020MR0724434
  21. 10.4064/sm-18-1-49-65, Studia Math. 18 (1959), 49–65. (1959) MR0101487DOI10.4064/sm-18-1-49-65
  22. Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950. (1950) Zbl0041.23401MR0038565
  23. 10.4064/sm-3-1-200-211, Studia Math. 3 (1931), 200–211. (1931) Zbl0003.25203DOI10.4064/sm-3-1-200-211
  24. Electrorheological fluid based force feedback device, in Proceedings of the 1999 SPIE Telemanipulator and Telepresence Technologies VI Conference (Boston, MA), Vol. 3840, 1999, pp. 88–99. (1999) 
  25. Minimax methods in critical point theory with applications to differential equations, Expository Lectures from the CBMS Regional Conference held at the University of Miami, American Mathematical Society, Providence, RI, 1984. (1984) MR0845785
  26. Electrorheological Fluids Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2002. (2002) MR1810360
  27. On the topology of the space L p ( t ) ( [ 0 ; 1 ] ) , Matem. Zametki 26 (1978), 613–632. (1978) MR0552723
  28. Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Heidelberg, 1996. (1996) Zbl0864.49001MR1411681
  29. Generalization of the problem of best approximation of a function in the space L s , Uch. Zap. Dagestan Gos. Univ. 7 (1961), 25–37. (1961) 
  30. 10.1063/1.1698285, J. Appl. Phys. 20 (1949), 1137–1140. (1949) DOI10.1063/1.1698285
  31. 10.1016/j.jmaa.2005.03.013, J. Math. Anal. Appl. 312 (2005), 24–32. (2005) Zbl1162.35374MR2175201DOI10.1016/j.jmaa.2005.03.013
  32. 10.1070/IM1987v029n01ABEH000958, Math. USSR Izv. 29 (1987), 33–66. (1987) DOI10.1070/IM1987v029n01ABEH000958
  33. On passing to the limit in nonlinear variational problem, Math. Sb. 183 (1992), 47–84. (1992) MR1187249

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.