Cyclic extensions of the Medvedev ordered groups

Michael R. Darnel

Czechoslovak Mathematical Journal (1993)

  • Volume: 43, Issue: 2, page 193-204
  • ISSN: 0011-4642

How to cite

top

Darnel, Michael R.. "Cyclic extensions of the Medvedev ordered groups." Czechoslovak Mathematical Journal 43.2 (1993): 193-204. <http://eudml.org/doc/31346>.

@article{Darnel1993,
author = {Darnel, Michael R.},
journal = {Czechoslovak Mathematical Journal},
keywords = {lattice-ordered group; lattice of -varieties; representable covers},
language = {eng},
number = {2},
pages = {193-204},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cyclic extensions of the Medvedev ordered groups},
url = {http://eudml.org/doc/31346},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Darnel, Michael R.
TI - Cyclic extensions of the Medvedev ordered groups
JO - Czechoslovak Mathematical Journal
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 2
SP - 193
EP - 204
LA - eng
KW - lattice-ordered group; lattice of -varieties; representable covers
UR - http://eudml.org/doc/31346
ER -

References

top
  1. 10.1080/00927878408823111, Comm. Alg. 12 (1984), 2315–2333. (1984) Zbl0506.06006MR0755918DOI10.1080/00927878408823111
  2. Above and below subgroups of a lattice-ordered group, Trans. Amer. Math. Soc. 259 (1980), 357–392. (1980) MR0849464
  3. Groupes et Anneaux Réticulés, Springer, 1977. (1977) MR0552653
  4. Torsion radicals of lattice-ordered groups, Symposia Math. 21 (1977), 479–513. (1977) Zbl0372.06011MR0465969
  5. 10.1017/S1446788700005760, J. Austral. Math. Soc. 9 (1969), 182–209. (1969) MR0249340DOI10.1017/S1446788700005760
  6. 10.1007/BF00337696, Order 4 (1987), 191–194. (1987) MR0916494DOI10.1007/BF00337696
  7. Metabelian ordered groups with the infinite shifting property, in preparation. 
  8. Coverings in the lattice of -varieties, Mat. Zametki 35 (1984), 677-684. (1984) Zbl0545.06008MR0750807
  9. Theory of varieties of lattice-ordered groups, Alg. i Logika 27(3) (1988), 249–273. (1988) Zbl0679.20022MR0997958
  10. On covers of the variety of abelian lattice-ordered groups, Siber. Math. J. 28 (1987). (1987) MR0904635
  11. Varieties of -groups are torsion classes, Czech. Math. J. 29(104), 11-12. MR0518135
  12. Metabelian varieties of -groups which contain no non-abelian o -groups, Alg. Univ. 24 (1989), 203–204. (1989) MR0931613
  13. Varieties of lattice ordered groups, Ph.D. dissertation, Simon Fraser University, 1984. (1984) 
  14. Nonabelian varieties of lattice-ordered groups in which every solvable -group is abelian, Mat. Sb. 126(168) (1985), 247–266, 287. (1985) MR0784356
  15. 10.1007/BF02483838, Alg. Univ. 13 (1981), 251–263. (1981) Zbl0427.06007MR0631560DOI10.1007/BF02483838
  16. Lattices of varieties of lattice-ordered groups and Lie groups, Alg. i Logika 16 (1977), 40–45, 123. (1977) MR0498317
  17. 10.1007/BF00400292, Order 3 (1986), 287–297. (1986) Zbl0616.06016MR0878925DOI10.1007/BF00400292
  18. personal communication to W. C. Holland, . 
  19. 10.1090/S0002-9939-1975-0384644-7, Proc. Amer. Math. Soc. 51 (1975), 301–306. (1975) Zbl0312.06010MR0384644DOI10.1090/S0002-9939-1975-0384644-7
  20. 10.1007/BF01362439, Math. Ann. 154 (1965), 217–222. (1965) Zbl0138.26201MR0181668DOI10.1007/BF01362439

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.