Cyclic extensions of the Medvedev ordered groups

Michael R. Darnel

Czechoslovak Mathematical Journal (1993)

  • Volume: 43, Issue: 2, page 193-204
  • ISSN: 0011-4642

How to cite

top

Darnel, Michael R.. "Cyclic extensions of the Medvedev ordered groups." Czechoslovak Mathematical Journal 43.2 (1993): 193-204. <http://eudml.org/doc/31346>.

@article{Darnel1993,
author = {Darnel, Michael R.},
journal = {Czechoslovak Mathematical Journal},
keywords = {lattice-ordered group; lattice of -varieties; representable covers},
language = {eng},
number = {2},
pages = {193-204},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cyclic extensions of the Medvedev ordered groups},
url = {http://eudml.org/doc/31346},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Darnel, Michael R.
TI - Cyclic extensions of the Medvedev ordered groups
JO - Czechoslovak Mathematical Journal
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 2
SP - 193
EP - 204
LA - eng
KW - lattice-ordered group; lattice of -varieties; representable covers
UR - http://eudml.org/doc/31346
ER -

References

top
  1. 10.1080/00927878408823111, Comm. Alg. 12 (1984), 2315–2333. (1984) Zbl0506.06006MR0755918DOI10.1080/00927878408823111
  2. Above and below subgroups of a lattice-ordered group, Trans. Amer. Math. Soc. 259 (1980), 357–392. (1980) MR0849464
  3. Groupes et Anneaux Réticulés, Springer, 1977. (1977) MR0552653
  4. Torsion radicals of lattice-ordered groups, Symposia Math. 21 (1977), 479–513. (1977) Zbl0372.06011MR0465969
  5. 10.1017/S1446788700005760, J. Austral. Math. Soc. 9 (1969), 182–209. (1969) MR0249340DOI10.1017/S1446788700005760
  6. 10.1007/BF00337696, Order 4 (1987), 191–194. (1987) MR0916494DOI10.1007/BF00337696
  7. Metabelian ordered groups with the infinite shifting property, in preparation. 
  8. Coverings in the lattice of -varieties, Mat. Zametki 35 (1984), 677-684. (1984) Zbl0545.06008MR0750807
  9. Theory of varieties of lattice-ordered groups, Alg. i Logika 27(3) (1988), 249–273. (1988) Zbl0679.20022MR0997958
  10. On covers of the variety of abelian lattice-ordered groups, Siber. Math. J. 28 (1987). (1987) MR0904635
  11. Varieties of -groups are torsion classes, Czech. Math. J. 29(104), 11-12. MR0518135
  12. Metabelian varieties of -groups which contain no non-abelian o -groups, Alg. Univ. 24 (1989), 203–204. (1989) MR0931613
  13. Varieties of lattice ordered groups, Ph.D. dissertation, Simon Fraser University, 1984. (1984) 
  14. Nonabelian varieties of lattice-ordered groups in which every solvable -group is abelian, Mat. Sb. 126(168) (1985), 247–266, 287. (1985) MR0784356
  15. 10.1007/BF02483838, Alg. Univ. 13 (1981), 251–263. (1981) Zbl0427.06007MR0631560DOI10.1007/BF02483838
  16. Lattices of varieties of lattice-ordered groups and Lie groups, Alg. i Logika 16 (1977), 40–45, 123. (1977) MR0498317
  17. 10.1007/BF00400292, Order 3 (1986), 287–297. (1986) Zbl0616.06016MR0878925DOI10.1007/BF00400292
  18. personal communication to W. C. Holland, . 
  19. 10.1090/S0002-9939-1975-0384644-7, Proc. Amer. Math. Soc. 51 (1975), 301–306. (1975) Zbl0312.06010MR0384644DOI10.1090/S0002-9939-1975-0384644-7
  20. 10.1007/BF01362439, Math. Ann. 154 (1965), 217–222. (1965) Zbl0138.26201MR0181668DOI10.1007/BF01362439

NotesEmbed ?

top

You must be logged in to post comments.