On the solution sets of some nonconvex hyperbolic differential inclusions

Francesco S. de Blasi; Giulio Pianigiani; Vasile Staicu

Czechoslovak Mathematical Journal (1995)

  • Volume: 45, Issue: 1, page 107-116
  • ISSN: 0011-4642

How to cite

top

Blasi, Francesco S. de, Pianigiani, Giulio, and Staicu, Vasile. "On the solution sets of some nonconvex hyperbolic differential inclusions." Czechoslovak Mathematical Journal 45.1 (1995): 107-116. <http://eudml.org/doc/31452>.

@article{Blasi1995,
author = {Blasi, Francesco S. de, Pianigiani, Giulio, Staicu, Vasile},
journal = {Czechoslovak Mathematical Journal},
keywords = {Darboux problem; hyperbolic partial differential inclusion; Lipschitz multifunctions},
language = {eng},
number = {1},
pages = {107-116},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the solution sets of some nonconvex hyperbolic differential inclusions},
url = {http://eudml.org/doc/31452},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Blasi, Francesco S. de
AU - Pianigiani, Giulio
AU - Staicu, Vasile
TI - On the solution sets of some nonconvex hyperbolic differential inclusions
JO - Czechoslovak Mathematical Journal
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 45
IS - 1
SP - 107
EP - 116
LA - eng
KW - Darboux problem; hyperbolic partial differential inclusion; Lipschitz multifunctions
UR - http://eudml.org/doc/31452
ER -

References

top
  1. Theory of retracts, PWN Polish Scientific Publishers, Warszawa, 1966. (1966) MR0216473
  2. 10.1090/S0002-9939-1991-1045587-8, Proc. Amer. Math. Soc. 111 (1991), 413–418. (1991) DOI10.1090/S0002-9939-1991-1045587-8
  3. On the set of solutions to Lipschitzean differential inclusions, Diff. and Integral Equations 1 (1988), 495–500. (1988) MR0945823
  4. 10.1080/00036818808839797, Applicable Analysis 30 (1988), 129–135. (1988) Zbl0635.34014MR0967566DOI10.1080/00036818808839797
  5. Linear operators, part I, Interscience, New-York, 1957. (1957) 
  6. On the set of solutions of the Darboux problem for some hyperbolic equations, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 38 (1980), 279–285. (1980) MR0620202
  7. 10.1016/0047-259X(77)90037-9, J. Multivariate Anal. 7 (1977), 149–182. (1977) MR0507504DOI10.1016/0047-259X(77)90037-9
  8. 10.4064/fm-87-1-53-72, Fund. Math. 87 (1975), 59–72. (1975) Zbl0296.28003MR0367142DOI10.4064/fm-87-1-53-72
  9. 10.1216/RMJ-1982-12-4-621, Rocky Mountain J. Math. 12 (1982), 621–625. (1982) MR0683856DOI10.1216/RMJ-1982-12-4-621
  10. 10.1080/00036818808839741, Applicable Analysis 27 (1988), 279–287. (1988) MR0936472DOI10.1080/00036818808839741
  11. On a non-convex hyperbolic differential inclusion, Proc. Edinburgh Math. Soc (to appear). (to appear) Zbl0769.34018
  12. A characterization of the solutions of the Darboux problem for the equation z x y F ( x , y , u ) , An. Ştiinţ. Univ. “Al. I. Cuza” Iaşi Sect. I a Mat. 33 (1987), 33–38. (1987) MR0925687

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.