Latin -parallelepipeds not completing to a Latin cube
Mathematica Slovaca (1989)
- Volume: 39, Issue: 2, page 121-125
- ISSN: 0232-0525
Access Full Article
topHow to cite
topKochol, Martin. "Latin $(n\times n\times (n-2))$-parallelepipeds not completing to a Latin cube." Mathematica Slovaca 39.2 (1989): 121-125. <http://eudml.org/doc/31574>.
@article{Kochol1989,
author = {Kochol, Martin},
journal = {Mathematica Slovaca},
keywords = {parallelepiped; latin cube},
language = {eng},
number = {2},
pages = {121-125},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Latin $(n\times n\times (n-2))$-parallelepipeds not completing to a Latin cube},
url = {http://eudml.org/doc/31574},
volume = {39},
year = {1989},
}
TY - JOUR
AU - Kochol, Martin
TI - Latin $(n\times n\times (n-2))$-parallelepipeds not completing to a Latin cube
JO - Mathematica Slovaca
PY - 1989
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 39
IS - 2
SP - 121
EP - 125
LA - eng
KW - parallelepiped; latin cube
UR - http://eudml.org/doc/31574
ER -
References
top- FU H.-L., On latin (n x n x (n - 2))-parallelepipeds, Tamkang J. of Mathematics 17, 1986, 107-111. (1986) MR0872667
- HALL M., Jr., An existence theorem for latin squares, Bull. Amer. Math. Soc. 51, 1945, 387-388. (1945) Zbl0060.02801MR0013111
- HORÁK P., Latin parallelepipeds and cubes, J. Combinatorial Theory Ser. A 33, 1982, 213-214. (1982) Zbl0492.05012MR0677575
- HORÁK P., Solution of four problems from Eger, 1981, I. In: Graphs and Other Combinatorial Topics, Proc. of the Зrd Czechoslovak Symposium on Graph Theory, Teubner-Texte zur Mathematik, band 59, Leipzig, 1983, 115-117. (1983) Zbl0525.05001MR0737023
- RYSER H. J., A combinatorial theorem with an application to latin rectangles, Proc. Amer. Math. Soc. 2, 1951, 550-552. (1951) Zbl0043.01202MR0042361
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.