Periodically forced damped beams resting on nonlinear elastic bearings

Michal Fečkan

Mathematica Slovaca (2005)

  • Volume: 55, Issue: 2, page 217-235
  • ISSN: 0139-9918

How to cite

top

Fečkan, Michal. "Periodically forced damped beams resting on nonlinear elastic bearings." Mathematica Slovaca 55.2 (2005): 217-235. <http://eudml.org/doc/31649>.

@article{Fečkan2005,
author = {Fečkan, Michal},
journal = {Mathematica Slovaca},
keywords = {beam equation; periodic solutions; Leray-Schauder degree},
language = {eng},
number = {2},
pages = {217-235},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Periodically forced damped beams resting on nonlinear elastic bearings},
url = {http://eudml.org/doc/31649},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Fečkan, Michal
TI - Periodically forced damped beams resting on nonlinear elastic bearings
JO - Mathematica Slovaca
PY - 2005
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 55
IS - 2
SP - 217
EP - 235
LA - eng
KW - beam equation; periodic solutions; Leray-Schauder degree
UR - http://eudml.org/doc/31649
ER -

References

top
  1. BATTELLI F.-FEČKAN M., Homoclinic orbits of slowly periodically forced and weakly damped beams resting on weakly elastic bearings, Adv. Differential Equations 8 (2003), 1043-1080. Zbl1036.35019MR1989289
  2. BATTELLI F.-FEČKAN M., Chaos in the beam equation, J. Differential Equations 209 (2005), 172-227. Zbl1082.35019MR2107472
  3. FEČKAN M., Free vibrations of beams on bearings with nonlinear elastic responses, J. Differential Equations 154 (1999), 55-72. (1999) Zbl0927.35071MR1685646
  4. FEIREISEL E., Nonzero time periodic solutions to an equation of Petrovsky type with nonlinear boundary conditions: Slow oscillations of beams on elastic bearings, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), 133-146. (1993) MR1216001
  5. MAWHIN J., Topological Degree Methods in Nonlinear Boundary Value Problems, Reg. Conf. Ser. Math. 40, Amer. Math. Soc, Providence, RI, 1979. (1979) Zbl0414.34025MR0525202
  6. STRIZHAK T. G., The Asymptotic Method of Normalization, Golov. Izd. Izd. Ob"ed. "Vishcha Shkola", Kiev, 1984. (Russian) (1984) Zbl0539.34002MR0774591

NotesEmbed ?

top

You must be logged in to post comments.