Nonzero time periodic solutions to an equation of Petrovsky type with nonlinear boundary conditions : slow oscillations of beams on elastic bearings

Eduard Feireisl

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)

  • Volume: 20, Issue: 1, page 133-146
  • ISSN: 0391-173X

How to cite

top

Feireisl, Eduard. "Nonzero time periodic solutions to an equation of Petrovsky type with nonlinear boundary conditions : slow oscillations of beams on elastic bearings." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.1 (1993): 133-146. <http://eudml.org/doc/84140>.

@article{Feireisl1993,
author = {Feireisl, Eduard},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Rayleigh-Ritz method; Hilbert spaces; transversal displacement equation; variational formulation; spectral analysis; linear operator},
language = {eng},
number = {1},
pages = {133-146},
publisher = {Scuola normale superiore},
title = {Nonzero time periodic solutions to an equation of Petrovsky type with nonlinear boundary conditions : slow oscillations of beams on elastic bearings},
url = {http://eudml.org/doc/84140},
volume = {20},
year = {1993},
}

TY - JOUR
AU - Feireisl, Eduard
TI - Nonzero time periodic solutions to an equation of Petrovsky type with nonlinear boundary conditions : slow oscillations of beams on elastic bearings
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 1
SP - 133
EP - 146
LA - eng
KW - Rayleigh-Ritz method; Hilbert spaces; transversal displacement equation; variational formulation; spectral analysis; linear operator
UR - http://eudml.org/doc/84140
ER -

References

top
  1. [1] H. Brézis: Periodic solutions to nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc.8, 409-426 (1983). Zbl0515.35060MR693957
  2. [2] H. Brézis - J.M. Coron - L. Nirenberg: Free vibrations for a nonlinear wave equation and the theorem of P. Rabinowitz, Comm. Pure Appl. Math.33, 667-689 (1980). Zbl0484.35057MR586417
  3. [3] G. Capriz: Self-excited vibrations of rotors, International Union of Theoretical and Applied Mechanics, Sympos. Lyngby/Denmark 1974, Springer-Verlag1975. Zbl0318.73068
  4. [4] G. Capriz - A. Laratta: Large amplitude whirls of rotors, Vibrations in Rotating Machinery, Churchill College, Cambridge1976. 
  5. [5] E. Feireisl: Time periodic solutions to a semilinear beam equation, Nonlinear Anal.12, 279-290 (1988). Zbl0657.35089MR928562
  6. [6] P.H. Rabinowitz: Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math.31, 31-68 (1978). Zbl0341.35051MR470378
  7. [7] A. Salvatore: Solutions of minimal period for a semilinear wave equation, Ann. Mat. Pura Appl.155 (4), 271-284 (1989). Zbl0714.35052MR1042839
  8. [8] K. Tanaka: Forced vibrations for a superlinear vibrating string equation, Recent topics in nonlinear PDE III, Tokyo1986, Lecture Notes Numer. Appl. Anal. 9, 247-266 (1987). Zbl0651.35055MR928195
  9. [9] G. Tarantello: Solutions with prescribed minimal period for nonlinear vibrating strings, Comm. Partial Differential Equations12, 1071-1094 (1987). Zbl0628.35007MR888007
  10. [10] S. Timoshenko - D.H. Young - W. WeaverJr.: Vibrations Problems in Engineering, 4th ed., John Wiley and Sons, New York1974. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.