Lex-ideals of DR -monoids and GMV-algebras

Dana Šalounová

Mathematica Slovaca (2003)

  • Volume: 53, Issue: 4, page 321-330
  • ISSN: 0139-9918

How to cite

top

Šalounová, Dana. "Lex-ideals of DR$\ell $-monoids and GMV-algebras." Mathematica Slovaca 53.4 (2003): 321-330. <http://eudml.org/doc/31677>.

@article{Šalounová2003,
author = {Šalounová, Dana},
journal = {Mathematica Slovaca},
keywords = {dually residuated -monoid; generalized MV-algebra; lex-extension; lex-ideal},
language = {eng},
number = {4},
pages = {321-330},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Lex-ideals of DR$\ell $-monoids and GMV-algebras},
url = {http://eudml.org/doc/31677},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Šalounová, Dana
TI - Lex-ideals of DR$\ell $-monoids and GMV-algebras
JO - Mathematica Slovaca
PY - 2003
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 53
IS - 4
SP - 321
EP - 330
LA - eng
KW - dually residuated -monoid; generalized MV-algebra; lex-extension; lex-ideal
UR - http://eudml.org/doc/31677
ER -

References

top
  1. BIGARD A.-KEIMEL K.-WOLFENSTEIN S., Groupes et anneaux réticulés, Springer-Verlag, Berlin-Heidelberg-New York, 1977. (1977) Zbl0384.06022MR0552653
  2. CHANG C. C., Algebraic analysis of many valued logic, Trans. Amer. Math. Soc. 88 (1958), 467-490. (1958) MR0094302
  3. DVUREČENSKIJ A., Pseudo MV-algebras are intervals in i-groups, J. Austral. Math. Soc. 70 (2002), 427-445. MR1902211
  4. GEORGESCU G.-IORGULESCU A., Pseudo-MV algebras: A non-commutative extension of MV-algebras, In: Proc. Fourth Inter. Symp. Econ. Inform., May 6-9, INFOREC Printing House, Bucharest, 1999, pp. 961-968. (1999) 
  5. GEORGESCU G.-IORGULESCU A., Pseudo MV-algebras, Mult.-Valued Log. 6 (2001), 95-135. Zbl1014.06008MR1817439
  6. HORT D.-RACHŮNEK J., Lex ideals of generalized MV-algebras, In: Combinatorics, Computability and Logic, Proc. DMTCS'01 (C S. Calude, M. J. Dinneen, S. Sburlan, eds.), Springer-Verlag, London, 2001, pp. 125-136. Zbl0983.06015MR1934826
  7. KOVÁŘ T., A General Theory of Dually Residuated Lattice Ordered Monoids, Ph.D. Thesis, Palacky Univ., Olomouc, 1996. (1996) 
  8. KÜHR J., Ideals of noncommutative DRl-monoids, Czechoslovak Math. J. (Submitted). MR2121658
  9. KÜHR J., Prime ideals and polars in DRl-monoids, (Submitted). 
  10. MUNDICI D., Interpretation of AF C*-algebras in sentential calculus, J. Funct. Anal. 65 (1986), 15-63. (1986) MR0819173
  11. RACHŮNEK J., A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255-273. Zbl1012.06012MR1905434
  12. RACHŮNEK J., Prime spectra of non-commutative generalizations of MV-algebras, Algebra Universalis 48 (2002), 151-169. Zbl1058.06015MR1929902
  13. SWAMY K. L. N., Dually residuated lattice ordered semigroups I, Math. Ann. 159 (1965), 105-114. (1965) MR0183797

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.