Nearly-idempotent plain algebras are indeed nearly idempotent plain algebras

Ágnes Szendrei

Mathematica Slovaca (1996)

  • Volume: 46, Issue: 4, page 391-403
  • ISSN: 0139-9918

How to cite

top

Szendrei, Ágnes. "Nearly-idempotent plain algebras are indeed nearly idempotent plain algebras." Mathematica Slovaca 46.4 (1996): 391-403. <http://eudml.org/doc/31815>.

@article{Szendrei1996,
author = {Szendrei, Ágnes},
journal = {Mathematica Slovaca},
keywords = {plain algebra; idempotent; invertible unary term; categorical equivalence; idempotent reduct},
language = {eng},
number = {4},
pages = {391-403},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Nearly-idempotent plain algebras are indeed nearly idempotent plain algebras},
url = {http://eudml.org/doc/31815},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Szendrei, Ágnes
TI - Nearly-idempotent plain algebras are indeed nearly idempotent plain algebras
JO - Mathematica Slovaca
PY - 1996
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 46
IS - 4
SP - 391
EP - 403
LA - eng
KW - plain algebra; idempotent; invertible unary term; categorical equivalence; idempotent reduct
UR - http://eudml.org/doc/31815
ER -

References

top
  1. CLARK D. M.-KRAUSS P. H., Plain para primal algebras, Algebra Universalis 11 (1980), 365-388. (1980) Zbl0455.08005MR0602022
  2. FREESE R.-McKENZIE R., Commutator Theory for Congruence Modular Varieties, LMS Lecture Notes vol. 125, Cambridge University Press, Cambridge-New York, 1987. (1987) Zbl0636.08001MR0909290
  3. KEARNES K. A., Every nearly idempotent plain algebra generates a minimal variety, Algebra Universalis 34 (1995), 322-325. (1995) Zbl0834.08002MR1348955
  4. KEARNES K. A.-SZENDREI Á., Projectivity and isomorphism of strictly simple algebras, Preprint, 1996. (1996) 
  5. McKENZIE R., On minimal, locally finite varieties with permuting congruence relations, Preprint, 1976. (1976) 
  6. McKENZIE R., An algebraic version of categorical equivalence for varieties and more general algebraic categories, In: Logic and Algebra. Proceedings of the Magari Conference, Pontignano, Italy, April 1994, pp. 211-243; Lecture Notes in Pure and Appl. Math. 180, M. Dekker, New Yоrk, 1996. (1994) MR1404941
  7. POST E. L., The Two-Valued Iterative Systems of Mathematical Logic, Ann. of Math. Stud. 5, Princeton Univ. Press, Princeton, 1941. (1941) Zbl0063.06326MR0004195
  8. SZENDREI Á., Clones in Universal Algebra, Sém. Math. Sup. 99 (1986). (1986) Zbl0603.08004MR0859550
  9. SZENDREI Á., Idempotent algebras with restrictions on subalgebras, Acta Sci. Math. (Szeged) 51 (1987), 251-268. (1987) Zbl0633.08002MR0911575
  10. SZENDREI Á., Every idempotent plain algebra generates a minimal variety, Algebra Universal s 25 (1988), 36-39. (1988) Zbl0618.08002MR0935000
  11. SZENDREI Á., Term minimal algebras, Algebra Universalis 32 (1994), 439-477. (1994) Zbl0812.08001MR1300482
  12. SZENDREI A., Expansions of minimal varieties, Acta Sci. Math. (Szeged) 60 (1995), 659-679. (1995) Zbl0833.08005MR1348937
  13. TAYLOR W., The fine spectrum of a variety, Algebra Universalis 5 (1975), 263-303. (1975) Zbl0336.08004MR0389716

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.