Fixed points of asymptotically regular mappings

Jarosław Górnicki

Mathematica Slovaca (1993)

  • Volume: 43, Issue: 3, page 327-336
  • ISSN: 0139-9918

How to cite

top

Górnicki, Jarosław. "Fixed points of asymptotically regular mappings." Mathematica Slovaca 43.3 (1993): 327-336. <http://eudml.org/doc/31860>.

@article{Górnicki1993,
author = {Górnicki, Jarosław},
journal = {Mathematica Slovaca},
keywords = {fixed point theorems of asymptotically regular mappings in Lebesgue spaces; Hardy spaces; Sobolev spaces},
language = {eng},
number = {3},
pages = {327-336},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Fixed points of asymptotically regular mappings},
url = {http://eudml.org/doc/31860},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Górnicki, Jarosław
TI - Fixed points of asymptotically regular mappings
JO - Mathematica Slovaca
PY - 1993
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 43
IS - 3
SP - 327
EP - 336
LA - eng
KW - fixed point theorems of asymptotically regular mappings in Lebesgue spaces; Hardy spaces; Sobolev spaces
UR - http://eudml.org/doc/31860
ER -

References

top
  1. BROWDER F. E., PETRYSHYN V. W., The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 571-576. (1966) Zbl0138.08202MR0190745
  2. BYNUM W. L., Normal structure coefficients for Banach spaces, Pacific J. Math. 86 (1980), 427-436. (1980) Zbl0442.46018MR0590555
  3. CASINI E., MALUTA E., Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure, Nonlinear Anal. 9 (1985), 103-108. (1985) Zbl0526.47034MR0776365
  4. DANEŠ J., On densifying and related mappings and their applications in nonlinear functional analysis, In: Theory of Nonlinear Operators. Proc. Summer School, October 1972, GDR, Akademie-Verlag, Berlin, 1974, pp. 15-56. (1972) MR0361946
  5. GOEBEL K., KIRK W. A., Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math. 28, Cambridge University Press, London, 1990. (1990) Zbl0708.47031MR1074005
  6. GÓRNICKI J., Fixed point theorems for asymptotically regular mappings in Lp spaces, Nonlinear Anal. 17 (1991), 153-159. (1991) MR1118074
  7. KRÜPPEL M., Ein Fixpunktsatz für asymptotisch reguläre Operatoren im Hilbert-Raum, Wiss. Z. Pädagog. Hochsch. "Liselotte Herrmann" Güstrow Math.-Natur. Fak. 27 (1989), 247-251. (1989) Zbl0721.47040MR1086619
  8. LIM T. C., On some Lp inequalities in best approximation theory, J. Math. Anal. Appl. 154 (1991), 523-528. (1991) MR1088648
  9. LIM T. C., XU H. K., XU Z. B., An Lp inequality and its applications to fixed point theory and approximation theory, In: Progress in Approximation Theory, Academic Press, 1991, pp. 609-624. (1991) 
  10. LIN P. K., A uniformly asymptotically regular mapping without fixed points, Canad. Math. Bull. 30 (1987), 481-483. (1987) Zbl0645.47050MR0919440
  11. PICHUGOV S. A., Jung's constant of the space Lp, (Russian), Mat. Zametki 43 (1988), 604-614. (Translation: Math. Notes 43 (1988), 348-354). (1988) MR0954343
  12. PRUS B., SMARZEWSKI R., Strongly unique best approximations and centers in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), 10-21. (1987) Zbl0617.41046MR0869515
  13. PRUS S., On Bynum's fixed point theorem, Atti Sem. Mat. Fis. Univ. Modena 38 (1990), 535-545. (1990) Zbl0724.46020MR1076471
  14. PRUS S., Some estimates for the normal structure coefficient in Banach spaces, Rend. Circ. Mat. Palermo (2) XL (1991), 128-135. (1991) Zbl0757.46029MR1119750
  15. SMARZEWSKI R., Strongly unique minimization of junctionals in Banach spaces with applications to theory of approximation and fixed points, J. Math. Anal. Appl. 115 (1986), 155-172. (1986) MR0835591
  16. SMARZEWSKI R., Strongly unique best approximation in Banach spaces II, J. Approx. Theory 51 (1987), 202-217. (1987) Zbl0657.41022MR0913618
  17. SMARZEWSKI R., Classical and Extended Strong Unicity of Approximation in Banach Spaces, (Polish), Mariae Curie-Sklodowska University, Lublin, 1986. (1986) 
  18. SMARZEWSKI R., On the inequality of Bynum and Drew, J. Math. Anal. Appl. 150 (1990), 146-150. (1990) MR1059576
  19. XU H. K., Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127-1138. (1991) Zbl0757.46033MR1111623
  20. ZALINESCU C., On uniformly convex function, J. Math. Anal. Appl. 95 (1983), 344-374. (1983) MR0716088

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.