Random fixed points for a certain class of asymptotically regular mappings
Balwant Singh Thakur; Jong Soo Jung; Daya Ram Sahu; Yeol Je Cho
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (1998)
- Volume: 18, Issue: 1-2, page 27-43
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topBalwant Singh Thakur, et al. "Random fixed points for a certain class of asymptotically regular mappings." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 18.1-2 (1998): 27-43. <http://eudml.org/doc/275963>.
@article{BalwantSinghThakur1998,
abstract = {Let (Ω, σ) be a measurable space and K a nonempty bounded closed convex separable subset of a p-uniformly convex Banach space E for p > 1. We prove a random fixed point theorem for a class of mappings T:Ω×K ∪ K satisfying the condition:
For each x, y ∈ K, ω ∈ Ω and integer n ≥ 1,
⃦Tⁿ(ω,x) - Tⁿ(ω,y) ⃦
≤ aₙ(ω)· ⃦x - y ⃦ + bₙ(ω) ⃦x -Tⁿ(ω,x) ⃦ + ⃦y - Tⁿ(ω,y) ⃦
+ cₙ(ω) ⃦x - Tⁿ(ω,y) ⃦ + ⃦y - Tⁿ(ω,x) ⃦,
where aₙ, bₙ, cₙ: Ω → [0, ∞) are functions satisfying certain conditions and Tⁿ(ω,x) is the value at x of the n-th iterate of the mapping T(ω,·). Further we establish some random fixed point theorems for these mappings in Hilbert spaces, in $L^p$ spaces, in Hardy spaces $H^p$ and in Sobolev spaces $H^\{k,p\}$ for 1 < p < ∞ and k ≥ 0. As a consequence of our main result, we extend and randomize the corresponding deterministic ones of Górnicki [14, 15] and others.},
author = {Balwant Singh Thakur, Jong Soo Jung, Daya Ram Sahu, Yeol Je Cho},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {p-uniformly convex Banach space; normal structure; asymptotic center; random fixed point; generalized random Lipschitzian mapping; random fixed points; generalized random Lipschitzian mappings; -uniformly convex spaces; Hardy spaces; Sobolev spaces},
language = {eng},
number = {1-2},
pages = {27-43},
title = {Random fixed points for a certain class of asymptotically regular mappings},
url = {http://eudml.org/doc/275963},
volume = {18},
year = {1998},
}
TY - JOUR
AU - Balwant Singh Thakur
AU - Jong Soo Jung
AU - Daya Ram Sahu
AU - Yeol Je Cho
TI - Random fixed points for a certain class of asymptotically regular mappings
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 1998
VL - 18
IS - 1-2
SP - 27
EP - 43
AB - Let (Ω, σ) be a measurable space and K a nonempty bounded closed convex separable subset of a p-uniformly convex Banach space E for p > 1. We prove a random fixed point theorem for a class of mappings T:Ω×K ∪ K satisfying the condition:
For each x, y ∈ K, ω ∈ Ω and integer n ≥ 1,
⃦Tⁿ(ω,x) - Tⁿ(ω,y) ⃦
≤ aₙ(ω)· ⃦x - y ⃦ + bₙ(ω) ⃦x -Tⁿ(ω,x) ⃦ + ⃦y - Tⁿ(ω,y) ⃦
+ cₙ(ω) ⃦x - Tⁿ(ω,y) ⃦ + ⃦y - Tⁿ(ω,x) ⃦,
where aₙ, bₙ, cₙ: Ω → [0, ∞) are functions satisfying certain conditions and Tⁿ(ω,x) is the value at x of the n-th iterate of the mapping T(ω,·). Further we establish some random fixed point theorems for these mappings in Hilbert spaces, in $L^p$ spaces, in Hardy spaces $H^p$ and in Sobolev spaces $H^{k,p}$ for 1 < p < ∞ and k ≥ 0. As a consequence of our main result, we extend and randomize the corresponding deterministic ones of Górnicki [14, 15] and others.
LA - eng
KW - p-uniformly convex Banach space; normal structure; asymptotic center; random fixed point; generalized random Lipschitzian mapping; random fixed points; generalized random Lipschitzian mappings; -uniformly convex spaces; Hardy spaces; Sobolev spaces
UR - http://eudml.org/doc/275963
ER -
References
top- [1] J. Barros-Neto, An Introduction to the Theory of Distribution, Dekker, New York 1973. Zbl0273.46026
- [2] I. Beg and N. Shahzad, Random fixed points of random multivalued operators on Polish spaces, Nonlinear Anal. TMA 29 (7) (1993), 835-847. Zbl0793.54031
- [3] A.T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), 641-645. Zbl0339.60061
- [4] A.T. Bharucha-Reid, Random Integral Equations, Academic Press, New York and London 1977.
- [5] Gh. Bocsan, A general random fixed point theorem and applications to random equations, Rev. Roumaine Math. Pure Appl. 26 (1981), 375-379. Zbl0473.60057
- [6] W.L. Bynum, Normal structure coefficient for Banach space, Pacific J. Math. 86 (1980), 427-436. Zbl0442.46018
- [7] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Springer-Verlag, Berlin 1977. Zbl0346.46038
- [8] S.S. Chang, Random fixed point theorems for continuous random operators, Pacific J. Math. 105 (1983), 21-31. Zbl0512.47044
- [9] J. Danés, On densifying and related mappings and their applications in nonlinear functional analysis, Theory of Nonlinear Operators. Proc. Summer School, Oct. 1972 GDR, Akademie-Verlag, Berlin 1974, 15-56.
- [10] N. Dunford and J. Schwarz, Linear Operators, Vol. I Interscience, New York 1958.
- [11] W.L. Duren, Theory of H^p}HUK-spaces, Academic Press, New York 1970.
- [12] H.W. Engl, Random fixed point theorems for multivalued mappings, Pacific J. Math. 76 (1978), 351-360. Zbl0355.47035
- [13] K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1) (1972), 171-174. Zbl0256.47045
- [14] J. Górnicki, Fixed point theorems for asymptotically regular mappings in L^p}HUK spaces, Nonlinear Anal. 17 (1991), 153-159. Zbl0758.47044
- [15] J. Górnicki, Fixed points of asymptotically regular mappings, Math. Slovaca 43 (3) (1993), 327-336. Zbl0806.47049
- [16] C.J. Himmellberg, Measurable relations, Fund. Math. 87 (1975), 53-72.
- [17] S. Itoh, A random fixed point theorem for a multivalued contraction, Pacific J. Math. 68 (1977), 85-90. Zbl0335.54036
- [18] S. Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261-273. Zbl0407.60069
- [19] T.C. Lim, On some L^p}HUK inequalities in best approximation theory, J. Math. Anal. Appl. 154 (1991), 523-528. Zbl0744.41015
- [20] T.C. Lim, H.K. Xu and Z.B. Xu, An L^p}HUK inequalities and its applications to fixed point theory and approximation theory, Progress in Approximation Theory, Academic Press (1991), 609-624.
- [21] T.C. Lin, Random approximations and random fixed point theorems for non-self maps, Proc. Amer. Math. Soc. 103 (1988), 1129-1135. Zbl0676.47041
- [22] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II - Function Spaces, Springer-Verlag, New York, Berlin 1979. Zbl0403.46022
- [23] A. Nowak, Applications of random fixed point theorems in the theory of generalized random differential equations, Bull. Polish Acad. Sci. Math. 34 (1986), 487-494. Zbl0617.60059
- [24] N.S. Papageorgiou, Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc. 32 (1987), 507-514. Zbl0606.60058
- [25] N.S. Papageorgiou, Deterministic and random fixed point theorems for single valued and multivalued functions, Rev. Roumaine Math. Pure Appl. 32 (1989), 53-61.
- [26] S.A. Pichugov, Jung's constant of the space L^p}HUK, (Russian), Mat. Zametki 43 (1988), 604-614. (Translation: Math. Notes 43 (1988), 348-354). Zbl0644.46016
- [27] S. Prus, On Bynum's fixed point theorem, Atti. Sem. Mat. Fis. Univ. Modens 38 (1990), 535-545. Zbl0724.46020
- [28] S. Prus, Some estimates for the normal structure coefficient in Banach spaces, Rend. Circ. Mat. Palermo 2 XL (1991), 128-135.
- [29] B. Prus and R. Smarzewski, Strongly unique best approximations and centers in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), 10-21. Zbl0617.41046
- [30] L.E. Rybinski, Random fixed points and viable random solutions of functional differential inclusions, J. Math. Anal. Appl. 142 (1989), 53-61. Zbl0681.60056
- [31] V.M. Sehgal and S.P. Singh, On random approximations and a random fixed point theorem for set valued mappings, Proc. Amer. Math. Soc. 95 (1985), 91-94. Zbl0607.47057
- [32] V.M. Sehgal and C. Waters, Some random fixed point theorems for condensing operators, Proc. Amer. Math. Soc. 90 (1984), 425-429.
- [33] R. Smarzewski, Strongly unique best approximations in Banach spaces II, J. Approx. Theory 51 (1987), 202-217. Zbl0657.41022
- [34] R. Smarzewski, On the inequality of Bynum and Drew, J. Math. Anal. Appl. 150 (1990), 146-150. Zbl0716.46023
- [35] K.K. Tan and X.Z. Yuan, Some random fixed point theorems, Fixed Point Theory and Applications (Edited by K. K. Tan), World Scientific, Singapore (1992), 334-345.
- [36] K.K. Tan and X.Z. Yuan, On deterministic and random fixed points, Proc. Amer. Math. Soc. 119 (1993), 849-856. Zbl0801.47044
- [37] H.K. Xu, Some random fixed point theorems for condensing and nonexpansive operators, Proc. Amer. Math. Soc. 110 (1990), 395-400. Zbl0716.47029
- [38] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. TMA 16 (1991), 1127-1138. Zbl0757.46033
- [39] H.K. Xu, A random fixed point theorem for multivalued nonexpansive operators in a uniformly convex Banach space, Proc. Amer. Math. Soc. 117 (1993), 1089-1092. Zbl0808.47044
- [40] H.K. Xu, Random fixed point theorems for nonlinear uniformly Lipschitzian mappings, Nonlinear Anal. 26 (1996), 1301-1311. Zbl0864.47051
- [41] C. Zalinescu, On uniformly convex function, J. Math. Anal. Appl. 95 (1983), 344-374. Zbl0519.49010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.