Random fixed points for a certain class of asymptotically regular mappings

Balwant Singh Thakur; Jong Soo Jung; Daya Ram Sahu; Yeol Je Cho

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (1998)

  • Volume: 18, Issue: 1-2, page 27-43
  • ISSN: 1509-9407

Abstract

top
Let (Ω, σ) be a measurable space and K a nonempty bounded closed convex separable subset of a p-uniformly convex Banach space E for p > 1. We prove a random fixed point theorem for a class of mappings T:Ω×K ∪ K satisfying the condition: For each x, y ∈ K, ω ∈ Ω and integer n ≥ 1, ⃦Tⁿ(ω,x) - Tⁿ(ω,y) ⃦ ≤ aₙ(ω)· ⃦x - y ⃦ + bₙ(ω) ⃦x -Tⁿ(ω,x) ⃦ + ⃦y - Tⁿ(ω,y) ⃦ + cₙ(ω) ⃦x - Tⁿ(ω,y) ⃦ + ⃦y - Tⁿ(ω,x) ⃦, where aₙ, bₙ, cₙ: Ω → [0, ∞) are functions satisfying certain conditions and Tⁿ(ω,x) is the value at x of the n-th iterate of the mapping T(ω,·). Further we establish some random fixed point theorems for these mappings in Hilbert spaces, in L p spaces, in Hardy spaces H p and in Sobolev spaces H k , p for 1 < p < ∞ and k ≥ 0. As a consequence of our main result, we extend and randomize the corresponding deterministic ones of Górnicki [14, 15] and others.

How to cite

top

Balwant Singh Thakur, et al. "Random fixed points for a certain class of asymptotically regular mappings." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 18.1-2 (1998): 27-43. <http://eudml.org/doc/275963>.

@article{BalwantSinghThakur1998,
abstract = {Let (Ω, σ) be a measurable space and K a nonempty bounded closed convex separable subset of a p-uniformly convex Banach space E for p > 1. We prove a random fixed point theorem for a class of mappings T:Ω×K ∪ K satisfying the condition: For each x, y ∈ K, ω ∈ Ω and integer n ≥ 1, ⃦Tⁿ(ω,x) - Tⁿ(ω,y) ⃦ ≤ aₙ(ω)· ⃦x - y ⃦ + bₙ(ω) ⃦x -Tⁿ(ω,x) ⃦ + ⃦y - Tⁿ(ω,y) ⃦ + cₙ(ω) ⃦x - Tⁿ(ω,y) ⃦ + ⃦y - Tⁿ(ω,x) ⃦, where aₙ, bₙ, cₙ: Ω → [0, ∞) are functions satisfying certain conditions and Tⁿ(ω,x) is the value at x of the n-th iterate of the mapping T(ω,·). Further we establish some random fixed point theorems for these mappings in Hilbert spaces, in $L^p$ spaces, in Hardy spaces $H^p$ and in Sobolev spaces $H^\{k,p\}$ for 1 < p < ∞ and k ≥ 0. As a consequence of our main result, we extend and randomize the corresponding deterministic ones of Górnicki [14, 15] and others.},
author = {Balwant Singh Thakur, Jong Soo Jung, Daya Ram Sahu, Yeol Je Cho},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {p-uniformly convex Banach space; normal structure; asymptotic center; random fixed point; generalized random Lipschitzian mapping; random fixed points; generalized random Lipschitzian mappings; -uniformly convex spaces; Hardy spaces; Sobolev spaces},
language = {eng},
number = {1-2},
pages = {27-43},
title = {Random fixed points for a certain class of asymptotically regular mappings},
url = {http://eudml.org/doc/275963},
volume = {18},
year = {1998},
}

TY - JOUR
AU - Balwant Singh Thakur
AU - Jong Soo Jung
AU - Daya Ram Sahu
AU - Yeol Je Cho
TI - Random fixed points for a certain class of asymptotically regular mappings
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 1998
VL - 18
IS - 1-2
SP - 27
EP - 43
AB - Let (Ω, σ) be a measurable space and K a nonempty bounded closed convex separable subset of a p-uniformly convex Banach space E for p > 1. We prove a random fixed point theorem for a class of mappings T:Ω×K ∪ K satisfying the condition: For each x, y ∈ K, ω ∈ Ω and integer n ≥ 1, ⃦Tⁿ(ω,x) - Tⁿ(ω,y) ⃦ ≤ aₙ(ω)· ⃦x - y ⃦ + bₙ(ω) ⃦x -Tⁿ(ω,x) ⃦ + ⃦y - Tⁿ(ω,y) ⃦ + cₙ(ω) ⃦x - Tⁿ(ω,y) ⃦ + ⃦y - Tⁿ(ω,x) ⃦, where aₙ, bₙ, cₙ: Ω → [0, ∞) are functions satisfying certain conditions and Tⁿ(ω,x) is the value at x of the n-th iterate of the mapping T(ω,·). Further we establish some random fixed point theorems for these mappings in Hilbert spaces, in $L^p$ spaces, in Hardy spaces $H^p$ and in Sobolev spaces $H^{k,p}$ for 1 < p < ∞ and k ≥ 0. As a consequence of our main result, we extend and randomize the corresponding deterministic ones of Górnicki [14, 15] and others.
LA - eng
KW - p-uniformly convex Banach space; normal structure; asymptotic center; random fixed point; generalized random Lipschitzian mapping; random fixed points; generalized random Lipschitzian mappings; -uniformly convex spaces; Hardy spaces; Sobolev spaces
UR - http://eudml.org/doc/275963
ER -

References

top
  1. [1] J. Barros-Neto, An Introduction to the Theory of Distribution, Dekker, New York 1973. Zbl0273.46026
  2. [2] I. Beg and N. Shahzad, Random fixed points of random multivalued operators on Polish spaces, Nonlinear Anal. TMA 29 (7) (1993), 835-847. Zbl0793.54031
  3. [3] A.T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), 641-645. Zbl0339.60061
  4. [4] A.T. Bharucha-Reid, Random Integral Equations, Academic Press, New York and London 1977. 
  5. [5] Gh. Bocsan, A general random fixed point theorem and applications to random equations, Rev. Roumaine Math. Pure Appl. 26 (1981), 375-379. Zbl0473.60057
  6. [6] W.L. Bynum, Normal structure coefficient for Banach space, Pacific J. Math. 86 (1980), 427-436. Zbl0442.46018
  7. [7] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Springer-Verlag, Berlin 1977. Zbl0346.46038
  8. [8] S.S. Chang, Random fixed point theorems for continuous random operators, Pacific J. Math. 105 (1983), 21-31. Zbl0512.47044
  9. [9] J. Danés, On densifying and related mappings and their applications in nonlinear functional analysis, Theory of Nonlinear Operators. Proc. Summer School, Oct. 1972 GDR, Akademie-Verlag, Berlin 1974, 15-56. 
  10. [10] N. Dunford and J. Schwarz, Linear Operators, Vol. I Interscience, New York 1958. 
  11. [11] W.L. Duren, Theory of H^p}HUK-spaces, Academic Press, New York 1970. 
  12. [12] H.W. Engl, Random fixed point theorems for multivalued mappings, Pacific J. Math. 76 (1978), 351-360. Zbl0355.47035
  13. [13] K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1) (1972), 171-174. Zbl0256.47045
  14. [14] J. Górnicki, Fixed point theorems for asymptotically regular mappings in L^p}HUK spaces, Nonlinear Anal. 17 (1991), 153-159. Zbl0758.47044
  15. [15] J. Górnicki, Fixed points of asymptotically regular mappings, Math. Slovaca 43 (3) (1993), 327-336. Zbl0806.47049
  16. [16] C.J. Himmellberg, Measurable relations, Fund. Math. 87 (1975), 53-72. 
  17. [17] S. Itoh, A random fixed point theorem for a multivalued contraction, Pacific J. Math. 68 (1977), 85-90. Zbl0335.54036
  18. [18] S. Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261-273. Zbl0407.60069
  19. [19] T.C. Lim, On some L^p}HUK inequalities in best approximation theory, J. Math. Anal. Appl. 154 (1991), 523-528. Zbl0744.41015
  20. [20] T.C. Lim, H.K. Xu and Z.B. Xu, An L^p}HUK inequalities and its applications to fixed point theory and approximation theory, Progress in Approximation Theory, Academic Press (1991), 609-624. 
  21. [21] T.C. Lin, Random approximations and random fixed point theorems for non-self maps, Proc. Amer. Math. Soc. 103 (1988), 1129-1135. Zbl0676.47041
  22. [22] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II - Function Spaces, Springer-Verlag, New York, Berlin 1979. Zbl0403.46022
  23. [23] A. Nowak, Applications of random fixed point theorems in the theory of generalized random differential equations, Bull. Polish Acad. Sci. Math. 34 (1986), 487-494. Zbl0617.60059
  24. [24] N.S. Papageorgiou, Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc. 32 (1987), 507-514. Zbl0606.60058
  25. [25] N.S. Papageorgiou, Deterministic and random fixed point theorems for single valued and multivalued functions, Rev. Roumaine Math. Pure Appl. 32 (1989), 53-61. 
  26. [26] S.A. Pichugov, Jung's constant of the space L^p}HUK, (Russian), Mat. Zametki 43 (1988), 604-614. (Translation: Math. Notes 43 (1988), 348-354). Zbl0644.46016
  27. [27] S. Prus, On Bynum's fixed point theorem, Atti. Sem. Mat. Fis. Univ. Modens 38 (1990), 535-545. Zbl0724.46020
  28. [28] S. Prus, Some estimates for the normal structure coefficient in Banach spaces, Rend. Circ. Mat. Palermo 2 XL (1991), 128-135. 
  29. [29] B. Prus and R. Smarzewski, Strongly unique best approximations and centers in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), 10-21. Zbl0617.41046
  30. [30] L.E. Rybinski, Random fixed points and viable random solutions of functional differential inclusions, J. Math. Anal. Appl. 142 (1989), 53-61. Zbl0681.60056
  31. [31] V.M. Sehgal and S.P. Singh, On random approximations and a random fixed point theorem for set valued mappings, Proc. Amer. Math. Soc. 95 (1985), 91-94. Zbl0607.47057
  32. [32] V.M. Sehgal and C. Waters, Some random fixed point theorems for condensing operators, Proc. Amer. Math. Soc. 90 (1984), 425-429. 
  33. [33] R. Smarzewski, Strongly unique best approximations in Banach spaces II, J. Approx. Theory 51 (1987), 202-217. Zbl0657.41022
  34. [34] R. Smarzewski, On the inequality of Bynum and Drew, J. Math. Anal. Appl. 150 (1990), 146-150. Zbl0716.46023
  35. [35] K.K. Tan and X.Z. Yuan, Some random fixed point theorems, Fixed Point Theory and Applications (Edited by K. K. Tan), World Scientific, Singapore (1992), 334-345. 
  36. [36] K.K. Tan and X.Z. Yuan, On deterministic and random fixed points, Proc. Amer. Math. Soc. 119 (1993), 849-856. Zbl0801.47044
  37. [37] H.K. Xu, Some random fixed point theorems for condensing and nonexpansive operators, Proc. Amer. Math. Soc. 110 (1990), 395-400. Zbl0716.47029
  38. [38] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. TMA 16 (1991), 1127-1138. Zbl0757.46033
  39. [39] H.K. Xu, A random fixed point theorem for multivalued nonexpansive operators in a uniformly convex Banach space, Proc. Amer. Math. Soc. 117 (1993), 1089-1092. Zbl0808.47044
  40. [40] H.K. Xu, Random fixed point theorems for nonlinear uniformly Lipschitzian mappings, Nonlinear Anal. 26 (1996), 1301-1311. Zbl0864.47051
  41. [41] C. Zalinescu, On uniformly convex function, J. Math. Anal. Appl. 95 (1983), 344-374. Zbl0519.49010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.