On superpseudoprimes

Lawrence Somer

Mathematica Slovaca (2004)

  • Volume: 54, Issue: 5, page 443-451
  • ISSN: 0232-0525

How to cite

top

Somer, Lawrence. "On superpseudoprimes." Mathematica Slovaca 54.5 (2004): 443-451. <http://eudml.org/doc/31928>.

@article{Somer2004,
author = {Somer, Lawrence},
journal = {Mathematica Slovaca},
keywords = {pseudoprime; superpseudoprime; Euler pseudoprime; strong pseudoprime; primitive prime divisor},
language = {eng},
number = {5},
pages = {443-451},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On superpseudoprimes},
url = {http://eudml.org/doc/31928},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Somer, Lawrence
TI - On superpseudoprimes
JO - Mathematica Slovaca
PY - 2004
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 54
IS - 5
SP - 443
EP - 451
LA - eng
KW - pseudoprime; superpseudoprime; Euler pseudoprime; strong pseudoprime; primitive prime divisor
UR - http://eudml.org/doc/31928
ER -

References

top
  1. BANG A. S., Taltheoretiske undersogelser, Tidsskrift Math. 5 (1886), 70 80, 130-137. 
  2. BIRKHOFF G. D.-VANDIVER H. S., On the integral divisors of a n - b n , Ann. of Math. (2) 5 (1904), 173-180. (1904) MR1503541
  3. FEHER J.-KISS P., Note on super pseudoprime numbers, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 26 (1983), 157-159. (1983) Zbl0519.10010MR0719787
  4. JANUSZ G., Algebraic Number Fields, Academic Press, New York, 1973. (1973) Zbl0307.12001MR0366864
  5. JOO I.-PHONG B. M., On super Lehmer pseudoprimes, Studia Sci. Math. Hungar. 25 (1990), 121-124. (1990) Zbl0615.10016MR1102204
  6. KŘÍŽEK M.-LUCA F.-SOMER L., 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books Math./Ouvrages Math. SMC 9, Springer-Verlag, New York, 2001. Zbl1010.11002MR1866957
  7. MAKOWSKI A., On a problem of Rotkiewicz on pseudoprime numbers, Elem. Math. 29 (1974), 13. (1974) MR0335424
  8. MARCUS D., Number Fields, Springer-Verlag, Berlin-New York, 1977. (1977) Zbl0383.12001MR0457396
  9. PHONG B. M., On super pseudoprimes which are products of three primes, Ann. Univ. Sci. Budapest. Eótvós Sect. Math. 30 (1987), 125-129. (1987) Zbl0642.10009MR0927816
  10. PHONG B. M., On super Lucas and super Lehmer pseudoprimes, Studia Sci. Math. Hungar. 23 (1988), 435-442. (1988) Zbl0597.10004MR0982690
  11. POMERANCE C.-SELFRIDGE J. L.-WAGSTAFF S. S., The pseudoprimes to 25 × 10 9 , Math. Comp. 35 (1980), 1003-1026. (1980) MR0572872
  12. ROTKIEWICZ A., On the prime factors of the numbers 2 p - 1 - 1 , Glasgow Math. J. 9 (1968), 83-86. (1968) 
  13. SCHINZEL A., On primitive prime factors of a n - b n , Math. Proc. Cambridge Philos. Soc. 58 (1962), 555-562. (1962) MR0143728
  14. SZYMICZEK K.: /, On prime numbers p, q, and r such that pq, pr, and qr are pseudoprimes, Colloq. Math. 13 (1965), 259-263. (1965) Zbl0127.01901MR0180522
  15. SZYMICZEK K., On pseudoprimes which are products of distinct primes, Amer. Math. Monthly 74 (1967), 35-37. (1967) Zbl0146.26803MR0205921
  16. ZSIGMONDY K., Zur Theorie der Potenzreste, Monatsh. Math. 3 (1892), 265-284. MR1546236

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.