A matrix with an application to the motion of an absorbing Markov chain. I.
Mohamed A. El-Shehawey; A. M. Trabya
Mathematica Slovaca (1996)
- Volume: 46, Issue: 1, page 101-110
- ISSN: 0232-0525
Access Full Article
topHow to cite
topEl-Shehawey, Mohamed A., and Trabya, A. M.. "A matrix with an application to the motion of an absorbing Markov chain. I.." Mathematica Slovaca 46.1 (1996): 101-110. <http://eudml.org/doc/31929>.
@article{El1996,
author = {El-Shehawey, Mohamed A., Trabya, A. M.},
journal = {Mathematica Slovaca},
keywords = {discrete-time Markov chains; time in transient state; joint probability generating function; matrix analysis},
language = {eng},
number = {1},
pages = {101-110},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {A matrix with an application to the motion of an absorbing Markov chain. I.},
url = {http://eudml.org/doc/31929},
volume = {46},
year = {1996},
}
TY - JOUR
AU - El-Shehawey, Mohamed A.
AU - Trabya, A. M.
TI - A matrix with an application to the motion of an absorbing Markov chain. I.
JO - Mathematica Slovaca
PY - 1996
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 46
IS - 1
SP - 101
EP - 110
LA - eng
KW - discrete-time Markov chains; time in transient state; joint probability generating function; matrix analysis
UR - http://eudml.org/doc/31929
ER -
References
top- BARNETT V. D., The joint distribution of occupation totals for a simple random walk, J. Austral. Math. Soc. 4 (1964), 518-528. (1964) Zbl0218.60063MR0174095
- BHAТ B. R., Some properties of regular Markov chains, Ann. Math. Statist. 32 (1961), 59-71. (1961) MR0119367
- COX D. R.-MILLER H. D., The Theory of Stochastic Processes, Methuen, London, 1965. (1965) Zbl0149.12902MR0192521
- EL-SHEHAWEY M. A., Limit distribution of first hittгng time of delayed random walk, J. Indian Soc. Statist. Oper. Res. XIII (1992), 63-72. (1992) MR1221463
- EL-SHEHAWEY M. A., On absorption probabilities for a random walk between two different barriers, Ann. Fac. Sci. Тoulouse Math. (6) I (1992), 1-9. (1992) MR1191730
- EL-SHEHAWEY M. A.-ТRABYA A. M., On times to absorption of random walks, In: 18th International Conference for Statistics, Computer Science, Scientifics, Social Applications, Cairo, Ain Shams University, Faculty of Science, 1993. (1993)
- FELLER W., An Introduction to Probability Theory and Its Applicatгons, Vol. 1 (Зrd ed.), John Wiley and Sons, New York, 1967. (1967) MR0243559
- GOOD I. J., The frequency count of a Markov chain and the transition to contгnuous time, Ann. Math. Statist. 32 (1961), 41-48. (1961) MR0126948
- ISOIFESCU M., Finite Markov Processes and Their Applications, John Willey and Sons, New York, 1980. (1980) MR0587116
- KAC M., Random walk in the presence of absorbing barriers, Ann. Math. Statist. 14 (1945), 62-67. (1945) Zbl0060.29101MR0011917
- KEMENY J. G.-SNELL J. L., Finite Markov Chains, Springer-Verlag, New York, 1976. (1976) Zbl0328.60035MR0410929
- KEMPERMAN J. H. B., The Passage Problem for a Stationary Markov Chain., Univ. of Chicago Press, Chicago, 1961. (1961) MR0119226
- NEUТS M. F., General transition probabilities for finite Markov chains, Proc. Cambridge Philos. Soc. 60 (1964), 83-91. (1964) MR0158436
- PARZEN E., Stochastic Process, Holden-day, Inc, London, 1962. (1962) MR0139192
- SRINIVASAN S. K.-MEHAТA K. M., Stochastic Process, Mc Grow-Hill, New Delhi, 1976. (1976)
- WEESAKUL B., The random walk between a reflecting and an absorbing barriers, Ann. Math. Statist. 32 (1961), 765-769. (1961) MR0125641
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.