Renewal theorems for random walks in multidimensional time

Abera Abay

Mathematica Slovaca (1999)

  • Volume: 49, Issue: 3, page 371-380
  • ISSN: 0139-9918

How to cite

top

Abay, Abera. "Renewal theorems for random walks in multidimensional time." Mathematica Slovaca 49.3 (1999): 371-380. <http://eudml.org/doc/31931>.

@article{Abay1999,
author = {Abay, Abera},
journal = {Mathematica Slovaca},
keywords = {random walk; multidimensional time; renewal theorem; slowly varying function},
language = {eng},
number = {3},
pages = {371-380},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Renewal theorems for random walks in multidimensional time},
url = {http://eudml.org/doc/31931},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Abay, Abera
TI - Renewal theorems for random walks in multidimensional time
JO - Mathematica Slovaca
PY - 1999
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 49
IS - 3
SP - 371
EP - 380
LA - eng
KW - random walk; multidimensional time; renewal theorem; slowly varying function
UR - http://eudml.org/doc/31931
ER -

References

top
  1. FELLER W., An Introduction to Probability Theory and its Applications II, (2nd ed.), John Wiley & Sons Inc, New York, 1971. (1971) 
  2. GALAMBOS J.-INDLEKOFER K. H., KATAI I., A renewal theorem for random walks in multidimensional time, Trans. Amer. Math. Soc. 300 (1987), 759-769. (1987) Zbl0622.60101MR0876477
  3. GALAMBOS J.-KATAI I., A note on random walks in multidimensional time, Math. Proc. Cambridge Philos. Soc 99 (1986), 163-170. (1986) Zbl0562.60094MR0809511
  4. GALAMBOS J.-KATAI I., Some remarks on random walks in multidimensional time, In: Proc 5th Pannonian Sympos. on Math. Statistics, Visegrad, Hungary 1985, (J. Mogyorodi et al., eds.), Reidel, Dordrecht, 1986, pp. 65-74. (1985) MR0956685
  5. GUT A., Stopped Random Walks, Limit Theorems and Applications, Springer-Verlag, New York, 1988. (1988) Zbl0634.60061MR0916870
  6. HARDY G. H.-WRIGHT E. M., An Introduction to the Theory of Numbers, (4th ed.), Oxford University Press, Oxford, 1960. (1960) Zbl0086.25803
  7. MAEJIMA M.-MORI T., Some renewal theorems for random walks in multidimensional time, Math. Proc. Cambridge Philos. Soc. 95 (1984), 149-154. (1984) Zbl0535.60079MR0727089
  8. NEY P.-WAINGER S., The renewal theorem for a random walk in two dimensional time, Studia Math. 46 (1972), 71-85. (1972) Zbl0239.60077MR0322978
  9. SENETA E., Regularly Varying Functions, Lecture Notes in Math. 508, Springer-Verlag, Berlin, 1976. (1976) Zbl0324.26002MR0453936
  10. TITCHMARSH E. C., The Theory of the Riemann Zeta Function, (2nd ed.), Clarendon Press, Oxford, 1986. (1986) Zbl0601.10026MR0882550

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.